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Hyperelastic Material Models for Finite
Element Analysis of Rubber

OH YEOH*

Traditional design of rubber engineering components involves hand calculations assuming
linear (Hookean) stress-strain behaviour Such calculations are restricted to the simplest
geometries and ignore the well-known non-linear stress-strain behaviour of rubber Modern
design methodology based on finite element analysis do not suffer from these limitations
However, the use of such computer-based techniques is hampered by difficulties in describing
the stress-strain behaviour of rubber in the form of suitable hyperelastic material models
This is in spite of the fact that the underlying mathematics have been well developed by the
pioneering efforts ofMooney, Rivhn, and Ogden

This paper describes recent work that has yielded new perspectives of the Rivlm and
Ogden hyperelastic material models It suggests that rubber is best represented by a model
where the shear modulus varies with strain in a relatively simple manner While the approach
has been developed as a practical solution to the problem of material characterisation for
the purposes of finite element analysis, it has interesting repercussions in our interpretation
of the molecular basis for rubber elasticity

In the traditional method of designing rubber
engineering components12, the designer uses
simple 'hand' calculations to estimate load-
deflection characteristics and load-bearing
capacity To keep the calculations tractable, it
is necessary to assume that the rubber material
exhibits linear (Hookean) stress-strain
behaviour, ignoring the well-known non-linear
characteristics of rubber elasticity. Even so,
such calculations are limited to the simplest
of geometries and loading conditions. As a
result, the calculations are at best only
approximate and there are considerable reliance
on experience and somewhat arbitrary 'rules
of thumb' This method produces rather

conservative designs which have served us
quite well up to now

Today, however, the customer is constantly
demanding more efficient designs. Modern
components must be smaller, lighter, carry more
load, serve under harsher environments, last
longer, etc. and yet be cheaper than the part it
replaces. Also, the ever shortening of the new
product cycle means that there is less and less
time available for multiple prototypes and
extended testing. The traditional method of
hand calculations is simply not accurate enough
for us to get it right the first time We need
more accurate predictions of performance. We
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cannot ignore the non-linearity of rubber just
to keep the mathematics simple.

Fortunately, intractable calculations can often
be solved numerically. When engineers first
applied finite element analysis (a computer-
based technique for engineering analysis) to
rubber design problems3 in the early 1970s,
only the largest universities and research
institutes could afford the powerful computers
needed to tackle even the simpler problems.
Today, such computer facilities are readily
available to everyone. So, it is no surprise to
find that finite element analysis is fast becoming
the normal method for designing rubber
components.

But, computer hardware and finite element
analysis software are not enough. They are
merely tools for the skilled engineer which
enable him to analyse the problem more
accurately and quickly. There is no substitute
for the skilled engineer's knowledge and
understanding of his materials, processes,
designs and service requirements. We shall only
discuss one facet of the materials knowledge
base here; the stress-strain properties of rubber.

Finite element analysis of rubber components
requires as input a mathematical description of
the stress-strain properties of the material. This
usually takes the form of a strain energy
function sometimes referred to as a
'hyperelastic material model'. Characterisation
of.a specific rubber material consists of
performing stress-strain measurements followed
by curve-fitting the data. Finite element analysis
programs even provide utilities for the
regression analysis. However, the task is not
as trivial as it seems. Inadequate material
models are often the cause of lack of agreement
between finite element analysis predictions and
experiment. This paper is intended to serve as

a practical guide to the novice on how
reasonable, even if approximate, material
models may be obtained from a limited testing
program.

THEORETICAL FOUNDATIONS

Material models may be derived from two
separate approaches to the study of rubber
elasticity: (a) the statistical or kinetic theory;
and (b) the phenomenological theory.

Statistical Theory

According to the Statistical Theory of
Rubber Elasticity4, the non-linear stress-strain
behaviour of rubber may be derived from
molecular considerations to yield the
constitutive equation:

...1

where W is the strain energy density, C]0 is a
material constant which is related to molecular
parameters, and 7( is the first invariant of the
Green deformation tensor. Equation 1 is
commonly known as the neo-Hookean matenal
model. Unfortunately, this model is only valid
for a relatively small range of strains4. Many
attempts have been made to refine the basic
Statistical Theory. These yield increasingly
complex constitutive models but none have
found practical utility in finite element analysis.
Nevertheless, the Statistical Theory occupies a
central position in our understanding of the
molecular basis of rubber elasticity.

Phenomenological Theory

Mooney5 took the phenomenological
approach which treats the problem from the
continuum mechanics viewpoint. Assuming that
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the rubber is homogenous, isotropic, elastic,
incompressible and obeys Hooke's law in
simple shear, he obtained the strain energy
function:

where C and CQ1 are material constants and
/t and /2 are the first two invariants of the
Green deformation tensor. Equation 2 is usually
quite successful in describing tensile data up
to moderately large strains of about 100%.
However, it is significantly less successful in
other modes of deformation, especially
compression. In spite of this limitation, it is
probably the most commonly used material
model in the finite element analysis of rubber.
Although Mooney's phenomenological
approach makes no appeal to molecular theory,
it is common to identify C|0 with molecular
parameters in the Statistical Theory and to.
interpret C01 as a measure of deviations from
the theory perhaps reflecting a failure to achieve
equilibrium conditions6.

Rivlin7 considerably expanded and
generalised Mooney's approach and showed
that the most general strain energy function
for a homogenous, isotropic, incompressible,
elastic material is:

...4
P=I

The first order approximation of this power
series is identical to Equation 2 which became
popularly known as the Mooney-Rivlin model.

More recently; another material model due
to Ogden8 appears to be gaining popularity.
Ogden's strain energy function may be written
as:

and a are material constants and X.,P i'where
X2, and Xj, are the principal extension ratios.
In the Ogden formulation, the indices, a , need
not be integers.

We note that the Rivlin and Ogden material
models are, power series and so it appears
possible to fit experimental stress-strain data
to any desired degree of precision by merely
taking a sufficient number of terms. Therefore,
these material models are in principle better
than the two-constant Mooney-Rivlin model.
Indeed, it is a common fallacy to assume that
the more terms in the strain energy function,
the better. In practice, the additional degrees
of freedom introduced by extra terms allow
the regression analysis to do a better job of
fitting experimental errors in the stress-strain
data! The result is often unstable strain energy
functions which predict physically unrealistic
behaviour under conditions outside the range
of experimental data9"1 ' . Indeed, higher order
strain energy functions usually show such poor
ability to predict behaviour outside the range
of experimental data that Chow and Cundiff1 J

recommended the use of the Mooney-Rivlin
material model. Clearly, its simplicity and
robustness are so valued that its inaccuracies
are tolerated.

According to Rivlin and Sawyers12, the
Ogden model is a special case of the Rivlin
strain energy function. Treloar4 expressed the
opinion that the two formulations were
essenially equivalent and that the choice of one
over the other is simply a question of
convenience. So, from the viewpoint of
performing finite element analysis, it does not
matter which strain energy function is used so
long as it gives an adequate representation of
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the material properties with a reasonable
number of fitting coefficients The question that
remains is how the coefficients of the chosen
material model may be obtained from a modest
testing program

RECENT DEVELOPMENTS

One difficulty common to both the Rivlm and
Ogden material models is the fact that they
contain a number of arbitrary fitting constants
of uncertain physical significance So long as
we regard the development of material models
merely as a curve-fitting exercise, it is difficult
to determine when an adequate model has been
derived and further refinements are not justified.
We review here some recent work which has
shed new light on the underlying physics of
these models Armed with this new
understanding, the development of realistic
matenal models is seen to be significantly
simplified.

Rivlin's Formulation

We start by considering a matenal obeying
Rivlm's model (Equation 3) subjected to simple
shear deformation The shear stress, T, is related
to the amount of shear, y by4

i
- =2
Y

dW dW
a/, dL

.5

It is seen that the shear modulus is given by
the sum of the partial derivatives dWidl^ and
dWldI2 For the specific cases of the neo-
Hookean and Mooney-Rivhn matenal models,
dWIdl^ and dWIdl^ are constants; that is the
shear modulus is constant. However, in the
more general Rivlin matenal model, dW/d!{ and
dW/dI2 are functions of/t and/2 We note from

Equation 5 that it is impossible to evaluate the
individual values of dWIdl^ and dWldJ^ from
shear stress-strain data. In fact, Kawabata and
Kawai13 have pointed out that it is impossible
to evaluate dWIdl and ^WI^l^ from stress-strain
data from any single mode of deformation, it
is necessary to have data from two or more
modes of deformation This increases
considerably the amount of expenmental work
needed to charactense the rubber

A considerable simplification is possible
Gregory14 had noted that usually dWIdl is
much larger than dWld!r So, Yeoh15 suggested
assuming dW/dI2 = 0 This simplifies Rivlm's
matenal model to:

where j is always zero but has been retained
for consistency with Rivlm's nomenclature. The
shear modulus, t/y, is then given by.

T dW
~ =2 — = 0 + 4C20(/,-3)

6C,ft(/,-3)2 +3 0 ,

Recalling that the shear strain is related to
by4

8

it is seen that Yeoh's model implies a matenal
whose shear modulus vanes with even powers
of the amount of shear This is consistent with
the symmetry of the deformation

Figure 1 shows the dependence of shear
modulus on (7j - 3) for a typical unfilled natural
rubber vulcamsate. We find that at small strains,
the shear modulus decreases with increasing
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strain but at large strains, the shear modulus
increases with,increasing strain. A convenient
way to describe this strain dependence of shear
modulus is the relation16'17:

which implies the strain energy function:

W=

+ I C. (7, - 3)'v '
... 10

Since the exponential term may be written as a
polynomial, it is seen that Equations 9 and 10
are not really different from Equations 7 and
6. But this particular form has the advantage
of implying two mechanisms; the exponential
term reflects the small strain behaviour where
the shear modulus decreases with increasing
strain while the polynomial term reflects the
large strain behaviour where the shear modulus
increases with increasing strain.

Expressing the strain energy function in
terms of (/( - 3) alone, simplifies the problem
of material characterisation considerably since
it is no longer necessary to evaluate dW/d^
and dW/dI2 at fixed values of /2 and /,,
respectively. Also, since dW!dI2 is now
irrelevant, data from any single deformation
mode is sufficient. Regression analysis using
shear data is obvious from the above discussion
but the more readily available tensile data may
be used instead15. Thus, it is possible to develop
appropriate strain energy functions to describe
elastic behaviour of rubbers from a limited test
program15-16. Strain energy functions of this

form (Equations 6 and 10) have been used
successfully in finite element analysis18'20

Ogden's Formulation

Here, we seek some physical interpretation
of the material parameters, ji and a . For
simplicity and compact printing, we shall
consider an Ogden strain energy function with
just one term and accordingly will drop the
subscript in the following. The arguments can
be easily extended to Ogden models with n
terms since each term has the same form.

We start by considering simple shear
deformation. It can be readily shown21 that the
secant shear modulus is given by:

20,

a X2 - X-2 ... 11

where GQ is the small strain shear modulus,
and X is the extension ratio of the equivalent
pure shear deformation which is related to the
amount of shear, y by:

y = X - X~ 12

Equation 11 shows that the secant shear
modulus is a function of a and of the shear
strain (which is reflected in X). The form of
the dependence is shown in Figure 2 where
the shear stress, T, is plotted as a function of
shear strain, y, for materials with a small strain
shear modulus, G0, equal to 1 MPa but with
different values for the index a. It is seen that
when a takes the value of 2 (i.e. the material
is neo-Hookean), the shear stress-strain curve
is linear (i.e. the shear modulus is constant).
When a is less than 2, the material softens
with increasing strain. On the other hand, when
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a is greater than 2, the material stiffens with
increasing strain. The form of Equation 11 is,
such that the same behaviour is obtained when
a takes a negative value; it is the absolute value
of a which determines whether the shear
modulus decreases or increases with increasing
strain. Although this dependence of shear
modulus on a is intrinsic to the Ogden strain
energy function, it is strange that there appears
to be no comment about this in the literature.

When we consider Ogden material models
with n > 1, we note that the product p, a each
makes a contribution to the shear modulus and
that GQ is given by:

n u ap p
...13

P=\

For the Mooney-Rivlin material model,
ttj - 2 and a2 = -2. From the above we find
that the shear modulus of the Mooney-Rivlin
model is constant. This, of course, is no surprise
since Mooney5 started with the assumption (hat
the stress-strain curve of rubber is linear in
simple shear. When |a | < 2, that term's
contribution to the secant shear modulus
decreases with increasing strain and conversely,
when jot | > 2, that term's contribution to the
shear modulus increases with increasing strain.
So, the shear stress-strain curve of a multi-
term Ogden material will meander to a greater
or lesser degree depending on the relative
magnitudes of a and (j,.

Ogden suggested that stress-strain data for
an unfilled natural rubber vulcanisate reported
by Treloar22 may be represented by an
Ogden material model with the coefficients:

ttj = 1.3, n,= 0.618 MPa
a2 = 5.0, ja2 = 0.00118 MPa
a = -2.0, 1* = -0.00981 MPa

From the above, it is now clear what
Ogden's model implies. The first term (a =
1.3) indicates that the shear modulus decreases
with increasing strain. The relatively large value
of fi means that this term dominates behaviour
at small strain. The second term (a2 = 5.0)
indicates that the shear modulus increases with
increasing strain and this term will dominate
behaviour at large strains. The third term (a3 =
-2.0) reflects on relative contributions to tensile
and compressive stresses when the deformation
deviates from shear21. The relatively small
value of |̂ 3 means that this term is not very
significant and neglecting it is equivalent to
the neglect of the (/2 - 3) by Yeoh. Thus, taken
together, Ogden's model describes the same
general dependence of shear modulus on strain
we discussed earlier.

IMPLICATIONS FOR MOLECULAR THEORY

Although our primary motivation for the study
of the phenomenological theory of rubber
elasticity is the development of material models
to facilitate finite element analysis, we cannot
help but reflect upon the implications for the
molecular theory. A material model with
arbitrary coefficients remains nothing more than
a curve-fit unless we are able to relate the
coefficients to some fundamental principle.
Some recent attempt has been made in this
direction.

We note that the elementary Statistical
Theory leading to Equation 1 assumes Gaussian
chain statistics which are invalid as the chains
approach their fully extended state at large
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strains. More elaborate theories have been
developed taking into account the finite
extensibility of the chains. Specifically,
Langevin chain statistics have been invoked4.
Wang and Guth23 showed that consideration
of Finite chain.extensibility leads to additional,
higher order terms in I} and /. Unfortunately,
the resulting strain energy function depends on
the specifics of the molecular model and the
number of terms in the material model makes
it difficult to make direct comparisons between
theory and experiment.

Recently, Gent24 suggested a new strain
energy function which may be written as:

1 0 V H I
-3) In 1-

(' -3)
...14

where / is the limiting value of /. corres-m i
ponding to the deformation when the'network
is fully stretched. The logarithmic term may
be written as a polynomial, so Equation 14 is
of the form of Equation 6. Ignoring /2 terms
may be partly justified on the grounds that at
least in the cases of certain molecular network
models proposed by Wang and Guth23 and
Arruda and Boyce25, strain energy functions
have been derived which contain only terms in
Ir Equation 14 predicts a shear modulus which
increases with increasing strain. This is
consistent with observed behaviour at large
strains. So, it appears that the increase in
modulus with increasing strain is associated
with finite chain extensibility.

Gent's strain energy function has the
advantage of reducing rubbery stress-strain
behaviour to just two closely related parameters
which, moreover, have clear physical meaning

in molecular terms. The constant / is theffi
limiting value of /, corresponding to the
deformation when the network is fully-
stretched. So / is related to chain length and
inversely related to crosslink density. Recalling
from the Statistical Theory that C|0 is
proportional to crosslink density, we see that
Im is inversely proportional to C10.

Recently, Yeoh and Fleming17 extended
Gent's treatment and suggested that the same
parameters have significance at small strains
too. They suggested writing the strain energy
function in the form:

where:

(A-3)

(' -3)

...15

...16

and presented supporting experimental data.
They tested a family of four unfilled natural
rubber vulcanisates which differ in crosslink
density. Figure 3 shows that (/ - 3) is
inversely proportional to C10 as expected from
Gent's theory. Also, the stress-strain behaviour
of all four rubbers in different deformation
modes may be predicted from measurements
made on just one member in a single mode.
This is illustrated in Figure 4 where the tensile
stress-strain curve of one member, shown as a
solid line, has been fitted to Equation 15 and
the derived material coefficients have been used
to predict the behaviour of the entire family
under different deformation modes. The
predictions are shown in Figures 4-6 as broken
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lines. It is seen that the agreement between
theory and experiment is quite satisfactory.

CONCLUSIONS

We conclude that the stress-stain properties of
rubber is best represented by a model where
the shear modulus varies with strain in a
relatively simple manner. At small strains, the
shear modulus decreases with increasing strain.
At large strains, the shear modulus increases
with increasing strain. This insight has
facilitated the development of practical material
models for finite element analysis.

This approach has interesting repercussions
in our interpretation of the molecular basis for
rubber elasticity. We regard the model from
classical Statistical Theory as our basic model
with two mechanisms for enhancement of shear
modulus. At large strains, the shear modulus
increases because of finite chain extensibility.
At small strains, the source of shear modulus
enhancement is less obvious. Empirically, we
know that it decreases rapidly from a finite
value as strain increases. We speculate that it
may be related to network defects. Unlike
previous treatments which interpret deviations
from the Statistical Theory in terms of the
second Mooney constant (i.e. in terms of/2),
we attribute all deviations to additional terms
in/r
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