
J. Rubb. Res. list. Malaysia, 31(3), 188-203

A Forecasting Methodology as Applied to
Rubber Prices

MOHD. NAPI BIN BAUD

The paper illustrates a statistical approach using Box and Jenkins' technique to
forecast RSS 1 and RSS 2 prices. The technique developed begins with a generalised
forecasting model followed by model specification namely identification, estimation
and diagnostic checking.

A number of forecasting techniques have
been developed depending upon the
nature of the variable to be forecast and
the purpose of the forecast. In this paper
a technique developed by G.E.P. Box and
G.M Jenkins is used as a method to
forecast the prices of two grades of rubber
- RSS 1 and RSS 2.

There are two main advantages of
Box and Jenkins method. First, using
the traditional approach one selects
arbitrarily a specific forecasting model.
For example, in estimating monthly
rubber price one may choose double
exponential smoothing model when in
fact mixed autoregressive moving average
(ARMA) model would be more appro-
priate. Box and Jenkins' methodology
starts with a broad, generalised model
which takes all possible separate model
combinations of moving average and
autoregressive models. Using this broad
model the forecaster rationally comes to
the appropriate specific model. Second,
the specific form of a given model has
traditionally been the result of a trial-and-
error procedure rather than a rational
structured approach to the determination
of a specific modeL Box and Jenkins'
structured approach eliminates various
hit-and-miss tactics1 )2.

The Generalised Model
Time series data can be categorised

as stationary and non-stationary data
(Figures 1 and 2). Most are generated by a
stochastic process. With a time dependent
phenomenon and many unknown factors
it is not possible to write a deterministic
model3 .

Stationary models are based on the
assumption that the process remains in
equilibrium about a constant mean level.
Suppose we have a stationary series having
mean y and the observations Zt , Zt-1 ,
%t 2 > ^t-4 • • • • ' are taken at equal
intervals. We define at , at.j , at_2 . . . . .
as 'white noise' or random shocks to
the system. Then there are two ways to
model the series as an autoregressive (AR)
model; and, as a moving average (MA)
model.

An autoregressive model can be ex-
pressed as:

%t = 0i %t.i + 02 %t-i ... + 0p2,_p

or using backshift operator B,
write Equation 1 as:
*(B)Zt -at
where^(B) = 1-

... 1
we can
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or

Time
Figure 1. Stationary series.

Time
Figure 2. Non-stationary series.

at - NI(Ot a a 2) and Zt

Sometimes a current deviation from the
mean period t is made linearly dependent
on all prior deviations back to period
(t-~q). Therefore, the current deviation
can be expressed as a linear function of
the * white noise* to the system. The
model, called a moving average model
can be expressed as:

... 3

at ~ NI(0,
Almost all of the stochastic or determi-

nistic time series encountered in practice
exhibit behaviour suggestive of non-
stationarity. Thus, a forecaster should
not restrict himself to either an auto-
regressive model or a moving average
model. He should begin with a preliminary
model which allows for stochastic and
deterministic trend characteristics, non-
seasonality and seasonality. The appro-
priate preliminary model to start with
is an autoregressive integrated moving
average model of the form:

where Q = (1 — <t>i - $2 - ••• 0P) M
- amount of regular dif-

ferencing
= length of a season

<t>p(B) = 1-

D = amount of seasonal dif-
ferencing

0 = represents a determinis-
tic trend constant.
Since most of the
time series data are
generated stochasti-
cally, the value of Op
is normally set equal
to zero.

Sometimes Z t is in the form of logarithm
or power transformation. This is to induce
constant amplitude in the series over time
so that the residuals from the fitted model
will have a constant variance. By appro-
priately choosing certain levels of p, dt q
and A one can obtain an autoregressive
model, moving average model or a com-
bination of these.
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For example, suppose that a particular
series was generated stochastically, it was
differenced and was found to arrive at
stationarity at d = 0, s = 4, and D = 1.
It was also identified that the model was
an AR model of the second order, such
that p = 2, q = 0, then our mathematical
model, Equation 4 will be:

From the previous definition, we see that
02(5) = 1 - 0,5 - 02 B2 and Q0(B) = 1.
Hence Equation 5 becomes:

Expanding
-f

then we can obtain:

=a . . . 6

... 7

faZt-6 + at ... 8
Methodology

The identification of a tentative model
or set of models from the general class
in Equation 4 requires prior knowledge
of the data pattern and the plots of
sample autocorrelation and partial auto-
correlation functions. The plots of auto-
correlation and partial autocorrelation
functions are the main indicators for
identifying a model because each model
has a different pattern of plot. A stationary
series is required for identification be-
cause the theoretical autocorrelation and
partial autocorrelation of stationary series
have distinct patterns for various models.
Thus, any n on- stationary series must go
through regular and/or seasonal differen-
cing process until the series becomes
stationary. The determination of seasonal
length(s) can be made by looking at a plot
of the series and where it is not easy to
identify the seasonal length(s), one should
try various values of s.

For each differencing pattern specified
by d, D and s, Box and Jenkins calculate
sample autocorrelation function, rk of
lag k as:

. . . 9

t =

and the theoretical autocorrelation func-
tion, ^fc ;

~v)(Zt-k ~ f ) 10' •»•»— — ' ' * * • XV

For the autoregressive model of order
k for example, there exists an auto-
correlation function p} such that:

; = 1, 2, 3 ... 11

where 0 f c f t is the last coefficient,
This will lead to Yule-Walker Equation4

which may be written in matrix form as:
D WL — 19

fc^fe ~ Ph ' ' '

The quantity <j)kk regarded as a func-
tion of lag k is the partial autocorrelation
function. The estimates of partial auto-
correlations as shown by Quenouille5, of
order p + 1 and higher are approximately
independently distributed with variance:

1Var(0fcfc) s - ; * > £ + !
n

where n - number of observation.

... 13

Generally, the theoretical autocorrela-
tion function of the AR model will tend
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to damp off slowly as k increases. Mean-
while the theoretical autocorrelation
function of the MA model is evidenced
by Spikes in ph for a particular k.- In
contrast, the partial autocorrelation func-
tion of the AR model drops quickly to
zero after k lags, while the partial auto-
correlation for the MA model tails off
slowly as k increases6.

Once a model has been identified,
both 0p and 9q can be estimated by
minimising the sum of squares residual
term [£(Z( - Zt)2 = £<z,2], where Zt is
the estimated value of period t. This is
done by using a non-linear least square
estimation.

The final stage for model determination
is the diagnostic checking. This involves
the examination of residuals at. If the
model is adequate these residuals will be
normally and independently distributed
with mean zero and constant variance,
o*a , (i.e. at ~ NI (O, o2a). Otherwise the
residual autocorrelations should be re-
examined, for potential improvement of
the model, and the process of identifi-
cation, estimation and diagnostic checking
will continue until an adequate model
has been found.

Case Study
This section presents rubber price data

for RSS 1 and RSS 2 for the period
1970-81. The patterns of the original
data are shown in Figure 3. Each series
appears to follow a basic pattern of slow
long-run growth with no seasonal fluctua-
tion. Two irregular points appear in each
series, in January 1974 and February
1980. A simple explanation would be that
during that particular time the demand
for natural rubber increased tremendously,
but the supply of natural rubber was
inelastic. Therefore, when the demand
increased suddenly, the price would
increase to a much higher level than the

equilibrium price, but when the supply
increased or the demand decreased with
close substitutes, the price decreased.

Further, investigation of the data
reveals that the non-constancy of error
variance exists. As the yearly price average
increases the error variance increases.
Therefore, the original data need trans-
formation to ensure horn oskedasti city.
The transformation function chosen is
Z, = v^7(.

Identification. Each of the original
scries indicates that it has an increasing
long-term trend. Therefore, each of the
series needs at least one degree of regular
differencing. Figure 4 shows the results
of the first degree of regular differencing
for RSS 1 and RSS 2. The two plots
suggest that the series have achieved their
stationarity. Their autocorrelation and
partial autocorrelation in Figures 5, 6 and
7 suggest the more suitable application
of the ARMA model. A general ARMA
model is ARMA (p, d, q). Having d = 1
and varying p and q from 1 to 3 (i.e.
p ~ 1, 2, 3, q = 1, 2, 3) there are nine
combinations altogether. Therefore, in
order to have a good model without going
through the long process, prior knowledge
of the data pattern and experience play
an important part in building the specific
model besides autocorrelation and partial
autocorrelation. The suggested model for
the two series is ARMA (2, 1, 2). The
mathematical model is:

(l-B)(l-<}>tB-<t>2B2)Zt = (l-e,^-0252)af
. . . 14

This model, after estimating its para-
meters, is subject to diagnostic checking.
If the diagnostic checking indicates that
the residual autocorrelation is not random
then one should look into the auto-
correlation function for possible improve-
ment of the model.

Estimation. Using monthly prices for
RSS 1 and RSS 2 between January 1970
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Figure 3. Plots of original data for RSS 1 and RSS 2 prices from 1970-81.

and December 1981 parametric values (1-5) (1 + 0.1115 + 0.577.B2) Z( =
for Equation 14 were estimated with an (1 + 0.3985 + 0.73852) at with oa] -
available computer routine. For RSS 1, 0.18269 ... 15
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Figure 4. P/oJ of first degree of regular differencing for RSS 1 and RSS 2.

and for RSS 2;
(1-B) (1 + 0.0255 + 0.395B2) Zt =
(1 + 0.4075 + 0.59052) at with aaj =

0.1298 "• 16

To illustrate how the models can be
used for forecasting, prices for RSS 1 and
RSS 2 were estimated for the next twelve
months in 1982. Tables 1 and 2 show the
forecasted values, confidence intervals,
actual values and percentage errors for
the respective series. In these particular
samples, the models appeared to predict
reasonably well The average percentage

error forecasting for RSS 1 and RSS 2 for
the first eight months of 1982 are 1.11%
and 1.68% respectively. The graphic
displays for forecasting at one time
lead for RSS 1 and RSS 2 are shown
in Figures 8 and 9 respectively. The
forecast points follow the original data
very closely within 95% confidence
limits. Whether the models are appro-
priate or not, however, can be determined
in the diagnostic checking step.

Diagnostic checking. After the pre-
liminary models have been identified
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Auto-correlation

Partial Auto-correlation

Figure 5. Autocorrelation and partial autocorrelation functions for RSS 1 with two
standard error limits.

and estimated, one should examine the
models to see whether they are appro-
priate or not, or whether any improve-
ment can be made. The main objective of
the models is to minimise the forecasting
errors, at , into a set of independent and
normally distributed errors with mean
zero and constant variance. Therefore, the
process of diagnostic checking involves
testing whether the residual series is
independent and normally distributed

with mean zero and constant variance.
Figures 10 and 11 show the residual
series of autocorrelation for RSS 1 and
RSS 2 series respectively. The dotted lines
are 95% confidence intervals. Although a
number of residuals do approach the
confidence intervals they do not exceed
the limits. Therefore, the figures suggest
that the residuals are randomly distributed.
Tables 3 and 4 are used to check the lack
of fit of the models for RSS 1 and RSS 2
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Figure 6. Autocorrelation function for RSS 2 with two standard error limits.
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TABLE 1. FORECASTS FOR RSS 1, ORIGIN AT DECEMBER 1981
AND 95.00% CONFIDENCE LIMITS

Month,
1 0891 JOi.

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

Average

Lower
confidence

limit

182.03
168.43
156.14
149.23
144.37
138.62
133.03
128.73
124.90
120.92
117.16
113.85

-

Forecast

205.35
205.76
204.65
204.53
205.19
205.18
204.80
204.85
205.06
205.01
204.89
204.94

-

Upper
confidence

limit

230.08
246.83
259.71
268.54
276.67
248.75
292.00
298.57
304.99
311.18
317.00
322.61

-

Actual

204.50
203.75
204.00
207.50
205.25
204.50
200.00
199.00
-
-
-
-

-

Error (%)

0.42
0.99
0.32
1.43
0.03
0.33
2.43
2.94
-
-
-
-

1.11

TABLE 2. FORECAST FOR RSS 2, ORIGIN AT DECEMBER 1981
AND 95.00% CONFIDENCE LIMITS

Month,
1 GOT1 JOi.

Jan
Feb
Mar
Apr
May
Jun
JuJ
Aug
Sep
Oct
Nov
Dec

Average

Lower
confidence

limit

175.25
163,51
151.25
144.02
139,30
134.31
129.33
125.09
121.37
117.79
114.38
111.22

-

Forecast

194.45
195.78
194.18
193.69
194.34
194.51
194.25
194.19
194.29
194.32
194.28
194.27

-

Upper
confidence

limit

214.65
230.95
242.46
250.71
258.52
265.83
272.34
278.42
284.30
289.89
295.20
300.33

-

Actual

194.00
191.50
191.75
192.25
192.00
191.25
188.75
188.25

-
-
-
-

-

Error (%)

0.23
2.23
1.27
0.75
1.22
1.70
2.91
3.16
-
-
-
-

1.68

respectively. The calculation for testing
lack of fit is based on the assumption
that:

Q. = 2, ...... k ,

...17

where n = N — d, is approximately
distributed as chi-square distribution
with (k-p-q) degree of freedom7, if the
fitted model is appropriate. The fourth
column in Tables 3 and 4 indicate the
levels of significance or probabilities.
There is no lag that is significant at either
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Figure 8. Graphic display for forecasting at one time lead for RSS 1.
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TABLE 3. DIAGNOSTIC CHI-SQUARE FOR
RESIDUAL SERIES RSS 1

Lag

6
12
18
24
30
36
40

Chi-square

1.75
3.91

10.57
18.73
21.46
22.36
24.21

Df

2
8

14
20
26
32
36

Probability

0.4164
0.8655
0.7194
0.5395
0.7176
0.8973
0.9329

TABLE 4. DIAGNOSTIC CHI-SQUARE
FOR RESIDUAL SERIES RSS 2

Lag

6
12
18
24
30
36
40

Chi-square

1,87
4,81

11.57
20.48
22.44
23.56
24.66

Df

2
8

14
20
26
32
36

Probability

0.3918
0.7775
0.6405
0.4281
0.6643
0.8598
0.9235

5% or 10% level (i.e. a = 0.05 or a = 0.10).
Thus the residual series of autocorrelation
and chi-square tests cast no doubt that the
models are appropriate.

DISCUSSION AND VALIDITY OF THE MODELS

The models that are obtained and pre-
sented in this paper are univariate sto-
chastic models. This simple approach can-
not be expected to produce very accurate
forecasts over long-term periods but
they may be useful for short-term fore-
casting, and these models are important
for the following reasons8 :

• It may be impossible to obtain
variables related to the variable
being forecast, leaving univariate
models as a choice.

• The development of univariate
models provides a *yardstick'

with which more sophisticated
models can be compared when-
ever the related variables may be
used to improve the accuracy
of the forecasts.

• Univariate models serve as a tool for
screening data during the early
stages for an analyst if the cause
of large residuals can be identified.

The models developed are not ultimate
models. The long-term forecasts for
rubber prices may need to consider a few
related substitutes, demand for rubber
products, etc. Yet, the variables related
to dependent variables can be incor-
porated into a multivariate transfer
function which is equivalent to the
simultaneous equation system.

We observe that the 95% confidence
limits in Tables 1 and 2 become wider
as the time lead increases. This is a reflec-
tion of the increase in forecast error
variance as the time lead increases. One
may suggest that updating the parameter
estimates as new data become available
usually leads to better forecasts. Another
way of obtaining better forecasts is by
updating the forecast to a new origin
(t + 1) whenever a new deviation is
available.

Rubber Research Institute of Malaysia
Kuala Lumpur November 1982

REFERENCES

1. THOMSON, HE. AND TIAO, G.C (1971) Analysis
of Telephone Data: A Case'Study of Forecasting
Seasonal Time Series. Bell J. Econ. Mgmt. Sci,
515.

2. MABERT, V.A. AND RAOCLIFFE, R.C. (1974)
A Forecasting Methodology as Applied to
Financial Times Series. The Accounting Review,

3. BOX, G.E. AND JENKINS, G.M. (1971) Time
Series Analysis: forecasting and Control
San Francisco: Holden - Day.

202



Mohd. Napi bin Daud: A Forecasting Methodology as Applied to Rubber Prices

4. WALKER, G. (1931) On Periodicity in Series of
Related Term. Proc. Royal Soc., A 131, 518.

5. QUENOUILLE, M.H. (1949) Approximate Test of
Correlation in Time Series. / Royal Star. Soc.,
811,68.

6. MAKRIDAKIS, S. AND WHEELWRIGHT, S.
(1978) Forecasting Methods and Applications,
pp 334 and 336. New York: John Wiley &
Sons.

7. BOX, G.E.P. AND PIERCE, D.A. (1970) Distri-
bution of Residual Auto-Correlations in Auto-
regressjve-Integrated Moving Average Time
Series Models. J. Am Statist. Ass., 64, 1509.

JENKINS, G.M. (1979) Practical Experience
with Modelling and Forecasting Time Series.
Forecasting (Anderson, O.D. ed.J. Amsterdam,
N. York: Nor-Holland Publishing Co.

203


