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Non-linear Hysteresis Models for Ultra-high Damping
NR Structural Dampers

RICHARD SAUSE"#, KYUNG-SIK LEE", JAMES RICLES”,
KAMARUDIN AB-MALEK ~ AND LE-WU LU’

Models for ultra-high damping natural rubber (UHDNR), a new material for structural
dampers, are investigated. Experimental tests of structural dampers made from UHDNR and the
observed mechanical properties are summarised. Two load rate independent hysteresis models,
which are more accurate for UHDNR than existing hysteresis models, are proposed. Good
agreement is observed between the experimental results and the models. The more complex of
the two models, the sequential asymptote model, represents accurately the behaviour of UHDNR
under the random load histories that are anticipated for structural dampers.
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Structural dampers are passive energy
dissipation devices used to protect structures
from dynamic loads such as earthquake and
wind. Structural dampers absorb and dissipate
input energy through inelastic deformation,
and, as a result, the response of the siructure is
decreased. Several types of structural dampers,
including steel yielding, friction. viscoelastic,
viscous fluid, and tuned mass dampers, have
been developed and used in buildings and
bridges during the past four decades. This
study focuses on ultra high damping natural
rubber {(UHDNR) dampers.

The use of rubber for earthquake protection
of structures has a 20-year history. High
damping rubber (HDR), with an equivalent

damping ratio of approximately 10%, has been
used in base isolators for buildings and bridges.
It is well known that HDR exhibits non-linear
behaviour that depends on strain amplitude,
loading frequency. temperature. and loading
mstory. Numerous experimental and analytical
studies of the behaviour of HDR isolators
under simulated earthquake loading have been
conducted (see, for example!’**"). Models for
the non-linear behaviour of HDR have focused
on the strain dependence of HDR. Strain
amplitudes up to 300% have been considered
in these models. A base isolator 18 typically
located at the foundation of a structure, and
much of the lateral displacement of the
structure under earthquake loading is designed
to take place at the foundation level, resulting
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in large strain demands on the isolator.
Structural dampers are usually located within
the structure, and arc subjected to much
smaller strains, up to perhaps 100%. Generally,
structural dampers require an equivalent
damping ratio significantly greater than 10%.

To investigate the potential for ultra-high
damping natural rubber (UHDNR) structural
dampers, experimental tests of prototype
UHDNR structural dampers and analytical
studies of structures with UHDNR dampers are
needed. This paper summarises data from
experiments on prototype UHDNR dampers
and presents hysteresis models which can
accurately predict the behaviour of UHDNR
dampers for strains up to 100%. The models
are intended for use in dynamic time history
simulations of structures with UHDNR
dampers under earthquake loading’.

EXPERIMENTAL TESTS

The mechanical properties of structural dampers
made from a newly-developed UHDNR have
been studied through a series of experiments

conducted at the ATLSS Center at Lehigh
University. The structural dampers, shown in
Figure 1, consist of two layers of UHDNR
material bonded between three steel plates.
When the forces are applied in the axial
direction of the plates, the layers of UHDNR
deform in shear. The dampers were fabricated at
the Malaysian Rubber Board and the properties
of the UHDNR compound which was cured at
145°C for 30 min are shown in Table 1.

During the experiments, a series of constant
amplitude sinusoidal displacement histories
were applied to the dampers, resulting in
sinusoidal shear strain histories in the UHDNR
layers. Each displacement history was selected
to produce a shear strain amplitude in the
UHDNR layers between 20% and 100%. The
displacement histories were applied using a
MTS 810 Material Test System®, and two
external displacement transducers were used
to verify the displacement histories. The shear
strain history at each strain amplitude consisted
of ten complete cycles at a frequency of 0.5 Hz.
The ambient temperature for these experiments
was held constant at 20°C. Experiments at
other .frequencies and ambient temperatures

TABLE 1. PROPERTIES OF UHDNR COMPOUND

Tensile strength, unaged (/50 37) (MPa)

Tensile strength, aged (IS0 37) 7 days/70° C (MPa)

Elongation at break, unaged (150 37y (%)

Elongation at break, aged (IS0 37} 7 days/70°C (%)
Tensile modulus at 100%, unaged (ISO 37) (MPa)

Tensile modolus at 100%, aged (ISO 37) (MPa)
Hardness, unaged (130 48) (IRHD)

Hardness, aged (IS0 48) (IRHD)

Compression set @ 24 h/70° C

Trouser tear, unaged (SO 34) (N/mm)

6.6
7.1
300
330
22
2.5
87
96
66.7
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(a) Configuration of structural Damper made from UHDNR

(b) Experimental test set-up

Figure 1. Configuration of structural damper made from UHDNR and experimental test set-up.
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were conducied and are summarised by
Lee’.

Figure 2 shows a typical shear stress-strain
hysteresis loop obtained from a UHDNR
damper experiment where the amplitude of the
simuscidal shear strain history is 100%%. Figure 2
shows that the hysteresis loops are repeatable.
Significant stiffness degradation was not
observed within the ten-cycle history, although
the first two cycles have slightly higher stiffness
than the subsequent cycles. Filled rubbers
often have a higher stiffness in the first cycle of
loading than in subsequent cycles. A decrease in
stiffness. known as Mullin's effect®, occurs over

The equivalent shear modulus and loss
factor are often used to define the mechanical
properties of damping materials. The equivalent
shear modulus, Geq, shown in figure 3 is
defined as the ratio of the maximum siress to
the maximum strain. To define the equivalent
loss factor, the material is treated as a linear
viscoelastic material with an elastic shear
modulus of G', a loss factor of tan(d), and a
complex shear modulus amplitude of G* =

G'[1+[tan(®)]*]'* equal to G,

For a linear viscoelastic material, the loss
factor is:

a few cycles of loading and the hysteresis loops tan(8) = —Z—ED—
stabilise thereafter. ™ ES .
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Figure 2. Typical hysteresis loops of UHDNR.
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where, £D is the energy dissipated per cycle
of sinusoidal loading. and ES is the maximum
strain energy stored in a cycle of sinusoidal
loading. In Equation I, the energy dissipated,
ED, can be calculated directly by integrating
the hystersis loops, as shown in Figure 3. The
maximum strain energy stored. ES, is not
easily calculated from the hysteresis loops,
however, ES can be defined in terms of the
elastic shear modulus., G'. and the equivalent
shear modulus. G, as follows:

1 G 2

o 2

. 1
L IOV G E—
2 mayx 2 2 f1+[[an(6)]’ mdx ?

where. v, is the shear strain amplitade in the
cycle of sinusoidal loading. Substituting
Eguation 2 into Equation !, and using the

ES=

trigonometric rule sin(®) = tan(3)/[1+{tan(8)]°]"*
results in the following:
sin(d) = —ED _
TG, ¥ ma 3
With ED calculated from the shear stress-
strain hysteresis loop, Equation 3 can be used
to determine sin(d), and the equivalent loss
factor is tan(d)., = sin(d¥{1-[sin(d)]}"".
The equivalent stiffness, (. and equivalent
toss factor, tan(d),, from the UHDNR
structural damper experiments are given in
Table 2. These values are averages of results
for cycles 4,3,6, and 7 of each ten-cycle
sinusoidal shear strain history. tan(8),, for
UHDNR structural dampers is quite high.
about 0.35 to 0.40. It is observed that G
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Figure 3. Definition of equivalent shear modulus, energy dissipated, and energy stored.
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TABLE 2. MECHANICAL PROPERTIES EVALUATED FROM THE EXPERIMENTAL TESTS

Strain amplitude (%) Geq(MPa) tan(B)t,q
20 0.782 0411
30 0.684 0.394
40 0.627 0.383
50 0.588 0.374
60 0.559 0.369
70 0.540 0.363
80 0.528 0.356
90 0.526 0.346
100 0.531 0.334

and tan(8),.4 gradually decrease with increasing
strain amplitude.

HYSTERESIS MODELS

HDR materials exhibit highly non-linear stress-
strain behaviour, including strain, frequency,
and temperature dependence under cyclic
loading!®. In the current paper, only strain
dependence is considered in models of the
stress-strain  behaviour, because this is the
dominant factor. Attention is limited to the
typical range of ioad frequency and temperature
for buildings.

Rate-independent differential models, such
as the Bouc-Wen model!! and the Ahmadi
model' have been widely used in the analysis
of base isolation systems. The current models'~
have been developed for strains up to 300%
(appropriate for base isolators). This paper
focuses on hysteresis models for UHDNR that
are accurate for strains up to 100%.

227

Ahmadi er al.! presented a differential
hysteresis model for HDR, based on the stress-
strain behaviour of HDR in simple shear tests,
as follows:

d dr
dr _ a |y +kli] +
dv dvy €
kz dT]('Y) _ dT‘g(’Y) e
dy dv 14 4

where, (y) indicates a function of v; 7,(y)
and T,(7y) are the asymptotes for the loading
{positive increment of strain, ) direction and
the unloading (negative increment of strain, -y)
direction, respectively; T(y) is the target
asymptote, either 7,(y) or 7,("y) depending on
the loading direction; e is the stress deviation
between T(vy) and the current stress,{vy); ¢g is
the stress deviation between %(~y) and the stress
at the most recent strain reversal (change in
loading direction), T(v); and k; and k, are
constants. The first term on the right side of
Equation 4 captures the softening that occurs
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for shear strains up to 100%. and the second
term in the right side of Equation 4 captures the
stiffening that occurs for shear strains greater
than 300%. After any strain reversal. the target
asymptote, T(vy), and the stress deviation. e,
are established and the stress-strain path (until
the next strain reversal) is uniquely described
by Equation 4. The stress-strain path depends
on the stress and strain at the strain reversal,
and the parameters k; and %,. and the asympiote
functions 7,(7). and 7,(v) which are established
tfrom test data. Eguation 4 was found to be
unsuitable for UHDNR considering strains up
to 100%, however, several models building on
the underlying concepts of Eguaiion 4 have
been developed and are presented below.

Linear Asymptote Model (LAM)

For strains up to 100%, Equation 4 can be
simplified as follows:

ar

dy

_ dm){
.5

1+ ki]
dy

€y

where, T(y) is the target asymptote |1,(y) or
T2}

T(y) and T,(y) are asymptote functions.
established from experimental data;

e=T(y)-T(y)
€9 = T(Yo) — To:

vo and Ty are the strain and stress at a strain
reversal point; and

k iy a material parameter established from
experimental data.

A previous study of HDR! suggests that. for
strains less than 100%. the asymptotes can be
assumed linear, that is, T,(y}) = Ay + A, and
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Ty} = Ay — A, and then Equation 5 is as
follows:

dy vy €,
A, 1+k.‘i]
€ .6

where, T(¥). &, €g, Yy, Tg. and k are as defined
for Equation 5, and A, and A, are material
parameters.

The solution to Fquation 6 is a simple
closed-form expression for #(y):

A, km—v])
W7

T(y) = T(y) - ¢, EXP ( .
The right side of Eguation 7 includes
two terms. The first term, 7(7y), is the target
asymptote, and the second term is the
difference between T(y) and T(vy), which
decays as the magnitude of [y, ~ v] increases.
As the second term decays, the stress-strain
path approaches asymptotically the target
asymptote. Values for the material parameters,
A As, and &, are determined from non-linear
regression  wsing  the experimental data
summarised earlier. The regression procedure
is discussed later in the paper. The values for
Ay, Az, and k are given in Table 3. Analytical
hysteresis loops, generated using Equeation 7
with these parameter values. are compared with
experimental hysteresis loops in Figure 4. The
analytical and experimental results in Figure 4
are not in acceptable agreement, and the hinear
asymptote model was not considered further.

Fourth Order Polynomial Asymptote Model
(FPAM)

Models with other polynomial asymptotes
were studied. Second, third. fourth, and fifth
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TABLE 3. PARAMETERS DETERMINED FROM THE NON-LINEAR REGRESSION

. A A A
St 1 2 3
T (MPa) (MPa) (MPa)
LAM 0.395 0.0985 _
FPAM ~0.196 00951 0212
FPAPM _0182 0104 0.191

Ay As N
(MPa) {MPa)

- - 17.9 -
0314 0.0874 114 —
0.293 0.114 18.2 2

order polynomials were investigated, and,
ultmately, fourth order polynomial asymptotes
were selected: T,(v)=A, v AV +AY ALY
+As and To(VI=A YA HAY A=A,
With these asymptote functions, Eguation 5 is
as follows:

dr _ dily) ]+ki]

d"\/ d'Y 6” .. 8
dT(y)  dt ()

where, ——=——
dy dy

=44,y + 34,77 + 24,7 + A,
for loading; and

dily) _ dny(v)
dvy dy

=—~4A Y + 34 - 247+ A,
for unloading.

e, €y Yo. Tp, and k are as defined for
Equation 5. and A,, A,, As, A and As are
material parameters. The solution to
Equarion 8 provides the following closed-form
expression for T(y):

T(y} = dT(y) - ¢, EXP(ML}) o

0
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where. for the loading direction,

T(v) = 1,(¥) = Ay ALY A Y ALY HAS
and

W(y) = Wily) = Ay v yotyyo +vo' 1+
Ay yotvo +As vy l+As: and for the
unloading direction.

T(y) = 1Y) = AV ALY -AY ALY -As;
and

Wy) = Walw) = A [¥ +yyorvvo +vo 1+
Al yyotye ARy Hye]+4 4

Values of the material parameters, A,. A,
Ay, Ay, Ag, and k. determined from non-linear
regression are given in Table 2. Analytical
hysteresis loops, generated using Equation 9
with these parameter values. are compared with
experimental hysteresis loops in Figure 5.
Compared to the results shown in Figure 4
for the linear asymptote model, the results
in Figure 5 show the fourth arder polynomial
asymptote model is significantly more accurate,
The equivalent shear modulus, G, and the
equivalent loss factor, tan(ﬁ)cq, are in good
agreement, especially for strains between 50%
and 100%. However, for hysteresis loops with
strain amplitude between 40% and 80%. the
stiffness of the analytical stress-strain path after
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a strain reversal 1s too small compared to the
experimental results. The FAPM can be
improved to overcome this observed short-
coming by modifying the efe; term, which
varies from | at the point of strain reversal to an
infinitesimal value as the stress-strain path
approaches the asymptote.

Fourth Order Polynomial Asymptote and
Power Function Model (FPAPM)

To overcome the observed shortcoming of
the FAPM, Eguation 8 is rewritten with the e/e;
term raised to the power N as follows:

[1 +k[§o]N}

where, dT(yWdy. T,(¥). T:(v), e. €q. Vo To,
k, A, Ay, As, Ay, and A; are as defined for
Equation 5.

g _

dy

dr{y)

dvy . 10

The solution to Equation 16 provides the
following closed-form expression for 7(y):

T(y) = Ty~

1
I'N

Wiy) k(y, —YHN-1)
€y

e, | 1-

.11

where, T(y) = 7,(y) and W(y) = W (y) for
loading;

F(y) = To(y) and W(y) = Wy(y) for unloading;

Wi (v) and Wy(y) are as defined for
Equation 9; and

Nzl
Similar to Equation 7 and Equation 9, the

right side of Equation {1 has two terms. The
first term is the target asymptote and the second
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term decays as the magnitude of (v — )
increases. Equation Il has seven parameters,
Al Ay, As. Ay, As, k, and N, to be determined
from experimental data. A value of 2 was
selected for N before the remaining parameters
were determined by non-linear regression.
Equation 11 rewritten with N = 2 i< as follows:
_ -1

Wiy k (vg—v)

€y

(y) = T(y)—e, [ -

- 12

Values of the parameters. A;. As, Az, Ay, As.
and k, determined from non-linear regression
are given in Tuble 2. Analytical hysteresis
loops. generated using Egquation 12 with
these parameter values, are compared with
experimental hysteresis loops in Figure 6.
Good agreement between the analytical and
experimental results is observed for hysteresis
loops with a strain amplitude between 20%
and 100%.

PARAMETER ESTIMATION

The values of the parameters were estimated
using non-linear regression in the stress-strain
plane. The parameter values are those that
satisfy the following least-squares condition:

Minimise }: E[Tcxp(i’j) - Tmod(i’j)]- .13
1)

where, i = index for data set at a specific
strain amplitude (e.g., i = 1, strain amplitude
= 20%);

j = index for a stress-strain point within the
data set at a specific strain amplitude;

Teplid) = stress data point from experiments;

Tmodll;)} = stress calculated from either
Equation 7, Equation 9. or Equation 12 using

Yexp(is)): and
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Yexplt,J} = stan data pont trom experments
corresponding to T,,,(z /)

Swce the experimental hysteresis loops are
shightly unsymmetric about the ongin. data
from both the loading (positive wnciement of
strain} direction and the unloading (negative
increment of strain) direction were used 1n the
non-linear regression

Figure 7{a) shows a typtcal hysteresis loop
and Frgure 7ih) shows details of this hy steresis
loop near the point of maxmmum strain
Between the pomnt of maxunum stress and
the pomnt of maximum strain, the experimental
hysteresis loop m Figure 7(b) has a negative
slope, which 15 assumed to be caused by a
(small) rate dependent beshaviour of the
UHDNR material The rate-independent
models presented previously will not capture
this behaviour Thus this 1egon of negauve
stiffness was removed from the expenimental
data [Figure 7{c}] betore the data was used mn
the not-linear regression, and a betier overall
fit of the experimental data was obtarned

The hysteresis meodels presented earher
have separate (but simlar) tunctions for the
loading and unloading directions Thus the
experimental data was divided into loading
and unloading segments The solid cucle at
the maxumum stress and strain  shown 1n
Frgure 7(c), defines the end of a loading
segment and the start of an unloading seginent
A similar pomt at the mimmum stress and
strain defines the end of an unloadimg segment
and the starting poutt of a loading segment
As shown m Figwre 7{c) the expernmental
hysteresis loops do not actually mclude these
pomnts, but the rate-independent models
presented previously will pass through these
peak pomnts The Marquardt algonthm® was
used to munimise the error expression 1n
Equanon [3 The parameter values tor the
models presented earher are given m Table 3
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Sequential Asymptote Model for Random
Loading

The analytical hysteresis loops shown in
Figure 6, generated using FPAPM { Eguarion {2),
are for the case of sinusmdal loading with
mcreasing stram amplitude For random loading,
direct application ot Egwuation [2 may not
give satisfactory results because a small strain
reversdl followed by a second stram reversal (so
that the straimn continues n the ongmal direction
of lpading) may cause the new stress-stram
path to overshoot significantly the stress strain
path that would be followed wrthout the
stram reversals Figure 8 1llustrates thus problem
Two unposed strain histories are shown m
Figure 8fa) The first 18 a sinusordal function
with decreasing amplitude The second 15 a
decreasing-amplrtude  sinvsowdal function wath
very small stram reversals, 20 02 placed within
the function Since FPAPM (Equation 12) 15 a
rdte independent hysterests model, this change
to the loading history should be mconsequential
Figure 8(b) shows the hysteresis loops gencrated
using FPAPM A comparison of the two sets
of loops shows that a small strain reversal causes
the stress-strain path to overshoot the correct
path wamediately atter the reversal

To overcome this problem, a sequennal
asymptote model (SAM} 1s used with FPAPM
The scquentral asymptote model uses an
algornithm that allows a sequence of asymptotes
to be mamtained to prevent the stress-stram
path from overshooting a previous stress-strain
path as a result o} strain reversals under random
loading Frguee 9 dllustrates the sequential
asymptote model Unlike FPAPM (Eguation
12}, which considers only a single asymptote
for each loading direction SAM considers
a sequence of asymptotes, where the first
asymptote 15 the original asymptote [erther
T,(v) or T2(y)] and each subsequent asymptote
15 a previously defined stress-stramn path
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| Figure 9(a}]. As shown in Figure 9(b), a new
asymptote is defined at a strain reversal if the
absolute value of the strain at the reversal is
less than the absolute value of the strain at
the strain reversal associated with the most
recently defined stress-strain path in the same
loading direction.

The following discussion explains the
hysteresis model that uses FPAPM with SAM.
The combined model uses FPAPM to define
the initial asymptotes and the basic form of the
asymptotic functions, while SAM provides the
basis for defining subsequent asymptotes. The
FPAPM equation, Eguetion 12, is rewritten
using subscripts to keep track of the most
recently defined asymptote in each direction of
loading, as follows. For the loading direction
[Figure 9(b},

T(]'[)(Y) = T[(-Y) -

1
W (W& Yen =Y
oL

1-

€nr 1)

. 14-1
where, T,(Y) = A v +A Y AV A yHAS,

oty = TI(Yor1y) — To(s
Ti{¥o10y) = T)(¥) evaluated at -y = vy 1)

W oY) =A 1Y+ Yoo 1 H¥Yoh o+t Ye i) +
2 2

Aoy +yvoan + Yoo + Asly+Hyvea.n] + As

k(l‘l) = k; and

Yor.1y and Ty gy are the strain and stress at
the 1** strain reversal for the loading direction.

For the unloading direction,
T(_)__n(‘?‘) - Tg(’y) -

Wo () k1) Yo, — Y]
€219

Cyapy| 1-

-1
] . 14-2

237

where, 7:(y) = —A ¥ Ay -Ayy +A, v-As;
€z 1y = T Vo) — Toz1p
(Yo = T2y) evaluated at v = yyo)

Wo n(y) =4, [V +Y* Yo, HYYo B Yol
+ Az[“!z"'“:"\’oa.n + Yo {21_1)] - Asly+yganl + A4
k[2,1) = k; and

Yorz,1; and 7o), are the strain and stress
at the 1% strain reversal for the unloading
direction,

In the above expressions, the first subscript
in parentheses identifies the loading direction
and the second subscript identiftes the stress-
strain path for each direction. vy, 1, and a1
are the strains at the 1st strain reversal in each
direction. 7y j, and Ty, are the siresses at the
1* strain reversal in each direction,

Stress-strain paths within a complex loading
history are now considered, The 1% strain
reversal in each direction defines the 1% stress-
strain path in each direction. Figure 9(b} shows
a strain reversal at vy, 5. Prior to this 2™ strain
reversal, the 1% strain reversal occurred at
Yoi1.1)- 50 the stress-strain path 7(; 5y(y) after the
2% strain reversal at yoq is asymptotic to
the 1° stress-strain path, Ty 4,(y), which is
asymptotic to the original asymptote, T,(y).

The stress-strain path in Figure 9(b) is as
follows:

Taz(W = TV — ey
[ ]g
e(!(!.,l)l 1

-

o1

-1
o012 15
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where, T](’Y). €001,1)» W{LU(’Y), k(l 1)s and
Yoo, are as defined for Equation 14-1;

Wm,zg(“;') = Al[ﬁ’3t'Yz'Yo(1.2);"Y'Yu GartYoiia +
Asly +yvoo2tve ] HAs[Y Yoo HAL

k12 and ey 5, are determined as described
later; and

Yooy 18 the strain at the 20 strain reversal
for the loading direction.

Considering the possibility of a sequence of
strain reversals. a general expression for a
stress-strain path in the loading direction,
Tr(y), is obtained by generalising Equation 15
as follows:

T](-Y)_E i

Tl =

W vk ey, 1]

eOl’l,;)

. 16-1

where. W (y) = Ajly? +v Yoo y+YYoii
Yoonl + ALY Yo o+ Yo'l + Asly+yao )]
+A,;

ki1, and ey, ), are determined as described
later: and

Va1, 18 the strain at the j" strain reversal for
the loading direction.

Similarly. the general expression for a
stress-strain path in the unloading direction.
Tiznly). is as follows:

1Y) —2 €2

=

Tl?!)('Y} =

W (W ke [Yn, Yl

€2,

{2
|
2
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where Wi ply) = -Aly +v Yozt Yo gt
Yo J)|+A7[T ¥ Yoz ptYo” 1-A 3[Y+Yoe ]
+A4;

ko, and e, are determined as described
later: and

Yoz, 18 the strain at the j™ strain reversal for
the unloading direction.

Eguarion 16 -1 and Equation 16 -2 show
that the current stress-strain path i requires
information (e.g.. Wi 5. K1 €01 a0d Yoip)
which is related to each previous stress-strain
path j, j = l..i-f. as well as information
(e.g. Woa ke €oian and vy, ) for the
current siress-strain path i. W, and v, , have
already been described. W, ,, depends on only
the strain at strain reversal i, vy, However,
€ni1yy and &, must be determined from the
previous loading history when stress-strain
path 1 is established (at v = vy o)

€y, 15 the stress deviation between the
asymptote for stress-strain path i and the stress
at the strain reversal that defines the beginning
of stress-strain path i. 7y, . Since the asymptote
for stress-strain path 1 is, in general, the most
recent stress-strain path (path i-1) in the same
loading direction, ey, (and similarly ey,
for Equation 16— 2) is easily calculated. For
example, for the 2% stress-strain path in the
loading direction (Equation 15),

o= TV 2} P,
-
] W2k o2 .
- o
€on

.17

where. 7,(ypn ) = T,(y) evaluated at y =
Yoo 25

Wi = Wy () evaluated at -y = vy



Journal of Rubber Research, Volume 4¢4), 2001

3 2 2
AiYo 27t Yo 1.2 Yo, 1 Yoo 2o {1.u™Yo (31.1)]"'
2 2
AalYo Y002 Yo 1Yo n.n]+A3[’Yo(1,2)+
Yoo+

A'Y(l,l),z = Yoo, — Yoo and

To1,2) 18 the stress at the 2" strain reversal for
the loading direction.

In Eguation 17, the first two terms equal
the stress on the asymptote for the 2™ stress-
strain path in the loading direction at the
strain reversal (at y = g 2) that defines the
beginning of the 2°¢ stress-strain path. These
are obtained by substituting <y, into the
function for stress on the 1* stress-strain path
in the loading direction Equation 14-I. The
general expression for ey, is:

1=1

o = T Yoy i) '2

i=1
-1
W(l,j)i k(],_,) A“/oud).

-7
0(1,1)
€oc1y) ‘

01 [1_

. 18-1
where, T1(Vo1) = T(v) evaluated at ¥ = o1,
Wi jn = Waa(y) evaluated at y = vy 5
=A Yol Yot Yoo jH Yoo Yo [21.3 Yol ot

2 2

As[¥a {LotYor Yoo o+ Yo (il Ao i+ Yo,
+A4;
AY(1 jpa = Yo — Yoruas and

To(L,y 18 the stress at the i strain reversal for
the loading direction.

Eguation 18-T1 is established by generalising
Equation 17, considering the possibility of a
sequence of strain reversals. Note that for the
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1* stress-strain path (ie. for i 1), the
summation in FEquation 18-1 equals zero
(i.e forj=1..0, the summation is zere), and,
therefore, Eguation 15-1 degenerates to the
definition of ey, |, given with Equation 14-1.

A similar general expression for ey, 15

1=]

o2y = T (Vo) -3
=1
€02, [ 1-

where. W, ,; = Wp () evaluated at vy =

Woinkap Moo

€

-1
] ~ Ton

L 182

Yoz

3 2 2 3
=A[vo 2ot Yo Yoyt Yoo Yozt Yozt
Aa[Vohit +y0 B ] As[ +Yor2i]

2 Yoot Yo Yooy T Yozy Yoz ™Yo,
+Ay;

A‘Y(Zd).l = Yoczjy — YoEas and

Too4y 1 the stress at the i strain reversal for
the unloading direction.

ko and kp; are similar to k, which, as
discussed earlier, is determined from a non-
linear regression. k, and k.; are derived
assuming that the instantaneous stiffness at
a point of strain reversal equals the slope of
the original asymptote [7,{y) or T,(v)] at the
strain corresponding to the strain reversal
(Yocriy ©f Yo,) multiplied by (1 + £). As a
result of this assumption, the instantancous
stiffness at a strain reversal depends only on
the strain at the reversal, not on the loading
history. and this instantaneous stiffness at
strain reversal is consistent with that of FPAM
(Equation 8) and FPAPM (Egquation 10).
For example. to derive k2 Egquation 15 is
differentiated:
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dT(a,z)(“!) - drt,(y) +k

dy dvy
AW
dy

(L

{'Y()(U)_ 'Y] + W(LI}(T)}

{1_ W Wk Yo~ 'Y]}

Coc1
+ kﬂ,zl[‘

{ W 2k 2 Yo 2~ ’Y]}

€o01,2)

dW,, (V)

['Y[)(] 2 PY} + W([;;(’Y)}
v

. 19

After substituting 'y = "yo(; 2 Into Equation 19
and equating the right side of Eguation 19 to
a0

dy
expressed as:

+k) evaluated at v = you2, kig 18

Ko =k

tLh

DWW Ay 1+ W] T

€0 1

Wl,l],2k(l 1) A‘m 132] -

1-

LAPY
.20

dW,, ()

where, DWW, |, = evaluated at

Y = Yo

= A B3y 1 22002 You Y0 “an)] +
Ay [2Yo0.20+ Yool + Az

Avin: and W, are defined with
Equation 7,

W1 2y2 = Wi o(y) evaluated at vy = yo 2
= 4A1"/03(1,2) + 3A3“Yo2(1,2) + 2A3yo0 + At

and
k(l,l] = k.
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Considering the possibility of a sequence of
strain reversals, the general expression for &1

18:
1-1

kll‘n = k(] 1 E,
=1
W.ookoA N
. Yo
FOW 0 Bt Wy ] I_W]
& oilp
o W’Il,l]l
W 21-1
dW . (v)
where, DW= g™ evaluated at vy =
Moo

= Ay13%6% 0+ 2YoraYor g+ Yo apl +
A 201,55+ Yo ] + Ax

Avip, and  Wq,, are defined with
Eguation 18-1; and

W1 o, = Wi y(y) evaluated at y = vy

= 4A1"/03(1,1) + 3A2\'02(1,.)+ 2A5Yo(1 + Ase

Similarly, the general expression for ki, is:

-1

k{2||= km)_z

)=

K]
W, ko A
[=DW5 5, A%, W] [p (’_Jﬂlm_]

€o2,)
kll’]) W
2,00
L 212
dW, \(v)
where,.DW,, ,, = %——- evaluated at y =
Yoz o

= “AIDTOIQ,” + 2o Yooy + 701(2,1)] +
As[2¥o@ + Yol — A
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A‘YLQ,J].I and W(2~I)-| are defined with
Eguation 18-2:

W(E.I),l = WQ,]J(’Y) evaluated at v = Yo
= 4A1’Y()3(2J) + 3A2Yu2|2.u + 24300+ Ay
Ell‘ld klz-l) = k

FPAPM with SAM, as defined by
Equation 16-1 and 16-2. Equation 18-f and
I8 2, and Fuarion 21-1 and 27-2, maintains
three sets of quantities, Yo gr) €ogstpe and
ki sty which define individual stress-strain
paths j = 1,2,3...1, where i1 is the current stress-
strain path, LST is | for the loading direction
or 2 for the unloading direction. The quantities
for the stress-strain paths are ordered so that
the absolute value of yoqsr,, is less than the
absolute value of vyys:,-1. and therefore
Yoasty has the smallest absolute value.
Whenever a strain reversal occurs, the strain at
the strain reversal is compared with the straias
ar the previous reversals for that direction,

YoLsT -

If the absolute value of the strain at the new
strain reversal is less than the absolute value
of vy, then a new stress-strain path is
established as follows: 1 is incremented by 1;
the strain at the new reversal becomes the new
YosTs and ey sty and kg s, are calculated
and the new stress-strain path 1 is established,

If the absolute value of the strain at the
new strain reversal is greater than or equal to
the absolute value of one value in vy st;.
Say VowsTm» MEN a new stress-strain path 18
established as follows: all of the quantities
Yousty Covstye and Aysry for j = m...1 are
discarded: i is set equal to m: the strain at the
new reversal becomes the new vy, gr,: and
eysty and Kypst,, are calculated and the new
stress-strain path i is established.

Compared to FPAPM alone (Equation 12)
which is based on the local loading history,
FPAPM with SAM more accurately accounts
for the loading history under random
loading. Figure 10 shows the hysteresis
loops generated using FPAPM with SAM.
Good agreement is observed between data
generated with FPAPM when small strain
reversals are not included in the history, and
FPAPM with SAM when small strain reversals
are included.

CONCLUSIONS

A series of experiments on UHDNR structural
dampers were summarised. Compared to HDR
used in base isolation system, the loss factor for
UHDNR structural dampers is quite high,
between 0.35 and 0.40,

Rate-independent models for the hysteresis
behaviour of UHDNR structural dampers
under dynamic loading have been presented.
The fourth order polynomial with power
function model (FPAPM) was quite accurate
when compared to the experimental data for
strain amplitudes less than 100%. However, the
paramelers determined from fitting the FPAPM
model to the experimental data should be
verified using other UHDNR experimental daia
sets.

The ftourth order polynomial with
power function model (FPAPM} combined
with SAM more accurately accounts
for the loading history under random
loading than FPAPM alone. In particular,
when the leading history includes a series
of  small strain  reversals, FPAPM
combined with SAM avoids the problem
of overshooting the siress-strain path that
would be followed without the strain
reversals.,
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Figure 10. Hysteresis loops using FPAPM with SAM under random loading.
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