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Non-linear Hysteresis Models for Ultra-high Damping
NR Structural Dampers

RICHARD SAUSE*#, KYUNG-SIK LEE*, JAMES RICLES*,
KAMARUDIN AB-MALEK** AND LE-WU LU*

Models for ultra-high damping natural rubber (UHDNR), a new material for structural
dampers, are investigated. Experimental tests of structural dampers made from UHDNR and the
observed mechanical properties are summarised. Two load rate independent hysteresis models,
which are more accurate for UHDNR than existing hysteresis models, are proposed. Good
agreement is observed between the experimental results and the models. The more complex of
the two models, the sequential asymptote model, represents accurately the behaviour of UHDNR
under the random load histories that are anticipated for structural dampers,
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Structural dampers are passive energy
dissipation devices used to protect structures
from dynamic loads such as earthquake and
wind. Structural dampers absorb and dissipate
input energy through inelastic deformation,
and, as a result, the response of the structure is
decreased. Several types of structural dampers,
including steel yielding, friction, viscoelastic,
viscous fluid, and tuned mass dampers, have
been developed and used in buildings and
bridges during the past four decades. This
study focuses on ultra high damping natural
rubber (UHDNR) dampers.

The use of rubber for earthquake protection
of structures has a 20-year history. High
damping rubber (HDR), with an equivalent

damping ratio of approximately 10%, has been
used in base isolators for buildings and bridges.
It is well known that HDR exhibits non-linear
behaviour that depends on strain amplitude,
loading frequency, temperature, and loading
history. Numerous experimental and analytical
studies of the behaviour of HDR isolators
under simulated earthquake loading have been
conducted (see, for example11'^1). Models for
the non-linear behaviour of HDR have focused
on the strain dependence of HDR. Strain
amplitudes up to 300% have been considered
in these models, A base isolator is typically
located at the foundation of a structure, and
much of the lateral displacement of the
structure under earthquake loading is designed
to take place at the foundation level, resulting
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in large strain demands on the isolator.
Structural dampers are usually located within
the structure, and are subjected to much
smaller strains, up to perhaps 100%. Generally,
structural dampers require an equivalent
damping ratio significantly greater than 10%.

To investigate the potential for ultra-high
damping natural rubber (UHDNR) structural
dampers, experimental tests of prototype
UHDNR structural dampers and analytical
studies of structures with UHDNR dampers are
needed. This paper summarises data from
experiments on prototype UHDNR dampers
and presents hysteresis models which can
accurately predict the behaviour of UHDNR
dampers for strains up to 100%. The models
are intended for use in dynamic time history
simulations of structures with UHDNR
dampers under earthquake loading7.

EXPERIMENTAL TESTS

The mechanical properties of structural dampers
made from a newly-developed UHDNR have
been studied through a series of experiments

conducted at the ATLSS Center at Lehigh
University. The structural dampers, shown in
Figure 1, consist of two layers of UHDNR
material bonded between three steel plates.
When the forces are applied in the axial
direction of the plates, the layers of UHDNR
deform in shear. The dampers were fabricated at
the Malaysian Rubber Board and the properties
of the UHDNR compound which was cured at
145°C for 30 min are shown in Table 1.

During the experiments, a series of constant
amplitude sinusoidal displacement histories
were applied to the dampers, resulting in
sinusoidal shear strain histories in the UHDNR
layers. Each displacement history was selected
to produce a shear strain amplitude in the
UHDNR layers between 20% and 100%. The
displacement histories were applied using a
MTS 810 Material Test System8, and two
external displacement transducers were used
to verify the displacement histories. The shear
strain history at each strain amplitude consisted
of ten complete cycles at a frequency of 0.5 Hz.
The ambient temperature for these experiments
was held constant at 20°C. Experiments at
other frequencies and ambient temperatures

TABLE 1. PROPERTIES OF UHDNR COMPOUND

Tensile strength, imaged (ISO 37) (MPa)
Tensile strength, aged (ISO 37) 1 days/700 C (MPa)
Elongation at break, unaged (ISO 37} (%)
Elongation at break, aged (ISO 37) 7 days/700 C (%)
Tensile modulus at 100%, unaged (ISO 37) (MPa)
Tensile modulus at 100%, aged (ISO 37) (MPa)
Hardness, unaged (ISO 48) (IRHD)
Hardness, aged (ISO 48) (IRHD)

Compression set @ 24 h/70° C
Trouser tear, unaged (ISO 34) (N/mm)

6.6
7.1

300

330

2.2
2.5

87
96
66.7
6
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(a) Configuration of structural Damper made from UHDNR

(b) Experimental test set-up

Figure 1. Configuration of structural damper made from UHDNR and experimental test!set-up.
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were conducted and are summarised by
Lee7.

Figure 2 shows a typical shear stress-strain
hysteresis loop obtained from a UHDNR
damper experiment where the amplitude of the
sinusoidal shear strain history is 100%. Figure 2
shows that the hysteresis loops are repeatable.
Significant stiffness degradation was not
observed within the ten-cycle history, although
the first two cycles have slightly higher stiffness
than the subsequent cycles. Filled rubbers
often have a higher stiffness in the first cycle of
loading than in subsequent cycles. A decrease in
stiffness, known as Mullin's effect9, occurs over
a few cycles of loading and the hysteresis loops
stabilise thereafter.

The equivalent shear modulus and loss
factor are often used to define the mechanical
properties of damping materials. The equivalent
shear modulus, G^, shown in Figure 3 is
defined as the ratio of the maximum stress to
the maximum strain. To define the equivalent
loss factor, the material is treated as a linear
viscoelastic material with an elastic shear
modulus of G', a loss factor of tan(5), and a
complex shear modulus amplitude of G* =
G'[l+ltan(8)]2J1/2 equal to G^,.

For a linear viscoelastic material, the loss
factor is:

tan(S) = ED
7i ES

0.4

-0.4

-0.8
-15 -1.0 -0.5 0 0.5 1.0 1.5

Strain

Figure 2. Typical hysteresis loops of UHDNR.
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where, ED is the energy dissipated per cycle
of sinusoidal loading, and ES is the maximum
strain energy stored in a cycle of sinusoidal
loading. Tn Equation I, the energy dissipated,
ED, can be calculated directly by integrating
the hystersis loops, as shown in Figure 3. The
maximum strain energy stored. ES, is not
easily calculated from the hysteresis loops,
however, ES can be defined in terms of the
elastic shear modulus. G', and the equivalent
shear modulus, Geq, as follows:

where; "ymax is the shear strain amplitude in the
cycle of sinusoidal loading. Substituting
Equation 2 into Equation /, and using the

trigonometric rule sin(S) = tan(5)/[l+[tan(8)]2]l/2

results in the following:

sin(8) = ED
u J max

With ED calculated from the shear stress-
strain hysteresis loop, Equation 3 can be used
to determine sin(S), and the equivalent loss
factor is tan(8)eq = sin(8)/{l-[sm(8)J2}1/2.
The equivalent stiffness, Gcq, and equivalent
loss factor, tan(8)eq, from the UHDNR
structural damper experiments are given in
Table 2. These values are averages of results
for cycles 4,5,6, and 1 of each ten-cycle
sinusoidal shear strain history. tan(S)eq for
UHDNR structural dampers is quite high,
about 0.35 to 0.40. It is observed that Geq

0.4 _

0 ^

-0.4

-0.8

ED

ES

-1.5 -1.0 -0.5 0 0.5 1.0

Strain

1.5

Figure 3. Definition of equivalent shear modulus, energy dissipated, and energy stored.
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TABLE 2. MECHANICAL PROPERTIES EVALUATED FROM THE EXPERIMENTAL TESTS

Strain amplitude (%)

20

30

40

50

60

70

80

90

100

Geq(MPa)

0.782

0.684

0.627

0.588

0.559

0.540

0.528

0.526

0.531

tanCSJeq

0.411

0.394

0.383

0.374

0.369

0.363

0.356

0.346

0.334

and tan(8)eq gradually decrease with increasing
strain amplitude.

HYSTERESIS MODELS

HDR materials exhibit highly non-linear stress-
strain behaviour, including strain, frequency,
and temperature dependence under cyclic
loading10. In the current paper, only strain
dependence is considered in models of the
stress-strain behaviour, because this is the
dominant factor. Attention is limited to the
typical range of load frequency and temperature
for buildings.

Rate-independent differential models, such
as the Bouc-Wen model11 and the Ahmadi
model1 have been widely used in the analysis
of base isolation systems. The current models1'5
have been developed for strains up to 300%
(appropriate for base isolators). This paper
focuses on hysteresis models for UHDNR that
are accurate for strains up to 100%.

Ahmadi et at.1 presented a differential
hysteresis model for HDR, based on the stress-
strain behaviour of HDR in simple shear tests,
as follows:

_
dy dy [

dy dy ...4

where, (7) indicates a function of 7; T](-y)
and T2(7> a*"6 me asymptotes for the loading
(positive increment of strain, 7) direction and
the unloading (negative increment of strain, 7)
direction, respectively; f(y) is the target
asymptote, either 7^7) or T2(7) depending on
the loading direction; e is the stress deviation
between 7(7) and the current stress,T(7); eQ is
the stress deviation between 7(7) and the stress
at the most recent strain reversal (change in
loading direction), 70(7); and k\ and £2 ®CQ
constants. The first term on the right side of
Equation 4 captures the softening that occurs
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for shear strains up to 100%. and the second
term in the right side of Equation 4 captures the
stiffening that occurs for shear strains greater
than 300%. After any strain reversal, the target
asymptote, f(y), and the stress deviation. e0,
are established and the stress-strain path (until
the next strain reversal) is uniquely described
by Equation 4. The stress-strain path depends
on the stress and strain at the strain reversal,
and the parameters k^ and k2. and the asymptote
functions i^-y). and T2("/) which are established
from test data. Equation 4 was found to be
unsuitable for UHDNR considering strains up
to 100%, however, several models building on
the underlying concepts of Equation 4 have
been developed and are presented below.

Linear Asymptote Model (LAM)

For strains up to 100%, Equation 4 can be
simplified as follows:

T2(y) = A,7 - A2, and then Equation 5 is as
follows:

.
dy [

where, f (-y) is the target asymptote |T|(*y) or
T2(-y)l;

Ti(y) and T2(y) are asymptote functions.
established from experimental data;

7o and TO are the strain and stress at a strain
reversal point; and

k is a material parameter established from
experimental data.

A previous study of HDR1 suggests that, for
strains less than 100%. the asymptotes can be
assumed linear, that is, T,(y) = A{y + A2 and

ay

where, T(y), e, e(h yu, TO. and k are as defined
for Equation 5, and A, and A2 are material
parameters.

The solution to Equation 6 is a simple
closed-form expression for T(y):

...1

The right side of Equation 7 includes
two terms. The first term, f (y), is the target
asymptote, and the second term is the
difference between 7(7) and 1(7), which
decays as the magnitude of [7,} - 7] increases.
As the second term decays, the stress-strain
path approaches asymptotically the target
asymptote. Values for the material parameters,
A,. A2, and k, are determined from non-linear
regression using the experimental data
summarised earlier. The regression procedure
is discussed later in the paper. The values for
A], A2, and k are given in Table 3. Analytical
hysteresis loops, generated using Equation 7
with these parameter values, are compared with
experimental hysteresis loops in Figure 4. The
analytical and experimental results in Figure 4
are not in acceptable agreement, and the linear
asymptote model was not considered further.

Fourth Order Polynomial Asymptote Model
(FPAM)

Models with other polynomial asymptotes
were studied. Second, third, fourth, and fifth
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TABLE 3. PARAMETERS DETERMINED FROM THE NON-LINEAR REGRESSION

Strain

LAM

FPAM

FPAPM

A,
(MPa)

0.395

-0.196

-0.182

A2 A3 A4 A5 k
(MPa) (MPa) (MPa) (MPa)

0.0985 - 17.9

0.0951 0.212 0.314 0.0874 11.4

0.104 0.191 0.293 0.114 18.2

N

-

-

2

order polynomials were investigated, and,
ultimately, fourth order polynomial asymptotes
were selected: T](-Y)=A1-/4+A2y+A3'y2-i-A47
+A5' and T2(-Y)=Alyl+A2y+A3^2+A4-y-Ag.
With these asymptote functions. Equation 5 is
as follows:

where, for the loading direction.

dy

where,

for loading; and

dy dy

+ 2A3y + A4

dy

3A2y2 - 2A37 + A

dy

= ~
for unloading.

e, £(,, y(), TO, and k are as defined for
Equation 5. and A h A2, AT., A4, and A5 are
materi al parameters . The solution to
Equation 8 provides the following closed-form
expression for T(-y):

and
+A5;

for tne

unloading direction,

and

Values of the material parameters, A}. A2,
A3, A4, A5, and k. determined from non-linear
regression are given in Table 2. Analytical
hysteresis loops, generated using Equation 9
with these parameter values, are compared with
experimental hysteresis loops in Figure 5.
Compared to the results shown in Figure 4
for the linear asymptote model, the results
in Figure 5 show the fourth order polynomial
asymptote model is significantly more accurate.
The equivalent shear modulus, Geq, and the
equivalent loss factor, tan(8)cq, are in good
agreement, especially for strains between 50%
and 100%. However, for hysteresis loops with
strain amplitude between 40% and 80%. the
stiffness of the analytical stress-strain path after
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Figure 4. Comparison of results from experiments and LAM.
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Figure 5. Comparison of results from experiments and FPAM.
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a strain reversal is too small compared to the
experimental results. The FAPM can be
improved to overcome this observed short-
coming by modifying the e/e0 term, which
varies from 1 at the point of strain reversal to an
infinitesimal value as the stress-strain path
approaches the asymptote.

Fourth Order Polynomial Asymptote and
Power Function Model (FPAPM)

To overcome the observed shortcoming of
the FAPM, Equation 8 is rewritten with the e/e0
term raised to the power N as follows:

dy ... 10

where. dT(y)/dy. T\(y), T2(7), e. e0, yQt TO,
k, A,, A2, A3, A4, and A5 are as defined for
Equation 8.

The solution to Equation 10 provides the
following closed-form expression for 7(7):

7(7) = 7(7) -

... 11

where, 7(7) - 7, (7) and W(y) = W}(y) for
loading;

7(7) = 72(7) and W(y) = W2(7) for unloading;

W\ (7) and W2( 7) are as defi ned for
Equation 9; and

Similar to Equation 7 and Equation 9, the
right side of Equation 11 has two terms. The
first term is the target asymptote and the second

term decays as the magnitude of (70 - 7)
increases. Equation 11 has seven parameters,
A,, A2, Av A4, A5, k, and JV, to be determined
from experimental data. A value of 2 was
selected for N before the remaining parameters
were determined by non-linear regression.
Equation 11 rewritten with N ~ 2 is as follows:

7(7) = f(-y) - ec 1-
W(y)k(y0-y)

... 12

Values of the parameters, A^ A2, A^, A4, A5.
and k, determined from non-linear regression
are given in Table 2. Analytical hysteresis
loops, generated using Equation 12 with
these parameter values, are compared with
experimental hysteresis loops in Figure 6.
Good agreement between the analytical and
experimental results is observed for hysteresis
loops with a strain amplitude between 20%
and 100%.

PARAMETER ESTIMATION

The values of the parameters were estimated
using non-linear regression in the stress-strain
plane. The parameter values are those that
satisfy the following least-squares condition:

Minimise - Tmod(v)]' 13

where, i = index for data set at a specific
strain amplitude (e.g., i = 1, strain amplitude
= 20%);

j = index for a stress-strain point within the
data set at a specific strain amplitude;

Tc\P(i-J) - stress data point from experiments;

- stress calculated from either
Equation 7, Equation 9. or Equation 12 using
7expfij); and

232



0.8 u

0.4

OH

-0.4 Experimental
Analytical

.5 -1.0 -0.5 0

Strain

0.5 1.0 l.:

T3

1

1.2

0.8

0.4

0.2 0.4 0.6 0.8 1.0
Strain amplitude

Experimental —O— Analytical

0.8

0.6

0.4 L

0.2 L

0.2 0,4 0.6 0.8 1.0

Strain amplitude

- Experimental —O— Analytical

Figure 6. Comparison of results from experiments and FPAPM.
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~ stairi data point from expenments
corresponding to TlxpO /)

Since the experimental h>steresis loops are
slightly unsymmetnc about the origin, data
from both the loading (positive inclement of
strain) direction and the unloading (negative
increment of strain) direction were used in the
non-linear regression

Figure 7(a) shows a typical hysteresis loop
and Figure 7(b) shows details of this hysteresis
loop near the point of maximum strain
Between the point of maximum stress and
the point of maximum strain, the experimental
hysteresis loop in Figure 7(b) has a negative
slope, which is assumed to be caused by a
(small) rate dependent behaviour of the
LHDNR material The rate-independent
models presented previous!) will not capture
this behauour Thus this legion of negative
stiffness was removed from the experimental
data [Figure 7(c)\ before the data was used in
the non-linear regression, and a better overall
fit of the experimental data was obtained

The hysteresis models presented earlier
have separate (but similar) functions for the
loading and unloading directions Thus the
experimental data was divided into loading
and unloading segments The solid circle at
the maximum stress and strain hhow n in
Figure 7(c), defines the end of a loading
segment and the start of an unloading segment
A similar point at the minimum stress and
strain defines the end ot an unloading segment
and the starting point of a loading segment
As shown in Figwe 7(c) the experimental
hysteresis loops do not actually include these
points, but the rate-independent models
presented previously will pass through these
peak points The Marquardt algorithm6 was
used to minimise the error expression in
Equation 13 The parameter values tor the
models presented earlier are given in Table ?

Sequential Asymptote Model for Random
Loading

The analytical hysteresis loops shown in
Figute 6, generated using FPAPM (Equation 12),
are for the case ot sinusoidal loading with
increasing strain amplitude For random loading,
direct application ot Equation 12 may not
give satisfactory results because a small strain
reversal followed by a second strain reversal (so
that the strain continues in the original direction
of loading) may cause the new stress-strain
path to overshoot significantly the stress strain
path that would be followed without the
strain reversals Figure 8 illustrates this problem
Two imposed strain histories are shown in
Figure 8(a) The first is a sinusoidal function
with decreasing amplitude The second is a
decreasmg-amplitude sinusoidal function with
very small strain reversals, ±0 02 placed within
the function Since FPAPM (Equation 12) is a
rate independent hysteresis model, this change
to the loading history should be inconsequential
Figure 8(b) shows the hysteresis loops generated
using FPAPM A comparison of the two sets
of loops shows that a small strain reversal causes
the stress-strain path to overshoot the correct
path immediately after the reversal

To overcome this problem, a sequential
asymptote model (SAM) is used with FPAPM
The sequential asymptote model uses an
algorithm that allows a sequence of asymptotes
to be maintained to prevent the stress-strain
path from o\ershootmg a previous stress-strain
path as a result of strain reversals under random
loading Ftguie 9 illustrates the sequential
asymptote model Unlike FPAPM (Equation
12), which considers only a single asymptote
for each loading direction SAM considers
a sequence of as>rnptotes, where the first
as>mptote is the original asymptote [either
T|("y) or T2(Y)] and each subsequent asymptote
is a previously defined stress-strain path

234



0.8

0.4

OH

-0.4

-0.8
-1.5 -1.0 -0.5 0

Strain

0.5

(a) Experimental hysteresis loops

1.0 1.5

(b) Detail of experimental hysteresis loop (c) Modified hysteresis loop
for non-linear regression

Figure 7. Modified experimental data for non-linear regression.



1.0

0.5

B

1

0.5

-1.0
101 201

Input strain data

(a) Applied strain

301

Strain
reversals

401

0.8

0-s

0.4

-0.4 -

-0.8
-1.5 -1.0 -0.5 0

Strain

0.5 1.0 1.5

FPAPM with strain reversals —— FPAPM without strain reversals

(b) Hysteresis loops by FPAPM

Figure 8. Hysteresis loops under random loading.



Richard Sause et al:. Non-linear Hysteresis Models for UHDNR Structural Dampers

[Figure 9(a)]. As shown in Figure 9(b), a new
asymptote is defined at a strain reversal if the
absolute value of the strain at the reversal is
less than the absolute value of the strain at
the strain reversal associated with the most
recently defined stress-strain path in the same
loading direction.

The following discussion explains the
hysteresis model that uses FPAPM with SAM.
The combined model uses FPAPM to define
the initial asymptotes and the basic form of the
asymptotic functions, while SAM provides the
basis for defining subsequent asymptotes. The
FPAPM equation, Equation 12, is rewritten
using subscripts to keep track of the most
recently defined asymptote in each direction of
loading, as follows. For the loading direction
[Figure 9(b)},

'0(1 1, 1-

where,

... 14-1

= A[y4+A2y3+A3y2+A4y+A5->

Ti<7ou.i)) = Tj(7) evaluated at y =

,
7ofi.nJ A.

k(L[ = k; and

7o(i.i) and TOIU) are the strain and stress at
the 1st strain reversal for the loading direction.

For the unloading direction,

&<v->

where, T2(7) = -Aly4+A2y'-A^y2+A4y-A^

eQ(2,\) - T2(70(2,l)) - T0(2,l)'

T2(7o(2.j)) = T2(7) evaluated at y = y^i)',

= k', and

7oa,i] and To(2,i> are me strain and stress
at the 1st strain reversal for the unloading
direction.

In the above expressions, the first subscript
in parentheses identifies the loading direction
and the second subscript identifies the stress-
strain path for each direction. 7o(i,i, and 7o(2,n
are the strains at the 1st strain reversal in each
direction. TQ,, n and Tn^.i, are the stresses at the
1st strain reversal in each direction.

Stress-strain paths within a complex loading
history are now considered. The 1st strain
reversal in each direction defines the 1st stress-
strain path in each direction. Figure 9(b) shows
a strain reversal at 7n(i.2i- Prior to this 2nd strain
reversal, the T1 strain reversal occurred at
7on.i)> so the stress-strain path T f l 2)(7) after the
2nd strain reversal at 7o(U) is asymptotic to
the 1st stress-strain path, T(1j,(7), which is
asymptotic to the original asymptote, T,(7).

The stress-strain path in Figure 9(b) is as
follows:

... 14-2 ... 15
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where, T,(y). e 0 ( i , i ) > W(lA)(y), *u j » . and
f i . i i are as defined for Equation 14-1;

where. = -A|[73+727<X2,J)+77o22.l)+

+-4
3[72+7on.2)]

f c ( l i 2 ) and <%, 2, are determined as described
later; and

7uii .2> is me strain at the 2!ld strain reversal
for the loading direction.

Considering the possibility of a sequence of
strain reversals, a general expression for a
stress-strain path in the loading direction,
T,1(1)(-jO, is obtained by generalising Equation 15
as follows:

where.
7ou,j)]
+A4;

+ 7o2l

£(!,,, and e(l(i,j) are determined as described
later: and

7o(i,J; is the strain at the jth strain reversal for
the loading direction.

Similarly, the general expression for a
stress-strain path in the unloading direction.
T(2.ii(7)- is as follows:

ecv>

^(2.,) and e()(2,|) are determined as described
later: and

-yoai) is the strain at the jth strain reversal for
the unloading direction.

Equation 16-1 and Equation 16-2 show
that the current stress-strain path i requires
information (e.g.. W(l^, *(].,,, £ 0 <i ,n- and -y^)
which is related to each previous stress-strain
path j, j = l...i-I. as well as information
(e.g. and 70(i ,)) for the_
current stress-strain path i. W(] ,, and yi}, | t l ) have
already been described. W(1>IJ depends on only
the strain at strain reversal i, 7ou.o- However,
e(inj, and k(] }) must be determined from the
previous loading history when stress-strain
path i is established (at 7 = 7oo,n)-

eodjj is the stress deviation between the
asymptote for stress-strain path i and the stress
at the strain reversal that defines the beginning
of stress-strain path i. TU(] :,. Since the asymptote
for stress-strain path i is. in general, the most
recent stress-strain path (path i-1) in the same
loading direction, c0(]>0 (and similarly e0{2>,i
for Equation 16-2) is easily calculated. For
example, for the 2nd stress-strain path in the
loading direction (Equation 15),

\-
... 17

where. T,(70(U2)) - Ti(7) evaluated at 7

W (7) evaluated at 7 = 7l)iL2);
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, i)+ 7o(L,2i7o(i,ij+7o (i

A7(i,i),2 = 7o(U)-7un.2); and

T0(U) is the stress at the 2nd strain reversal for
the loading direction.

In Equation 17, the first two terms equal
the stress on the asymptote for the 2nd stress-
strain path in the loading direction at the
strain reversal (at -y = -70(1,2)) that defines the
beginning of the 2nd stress-strain path. These
are obtained by substituting ^1,2) into tne

function for stress on the 1st stress-strain path
in the loading direction Equation 14-1. The
general expression for e0,i4l is:

'O(Jj)

where,

w

W" A-y
0(1 j)i

... 18-1

)) = ̂ 1(7) evaluated at 7 = 70(1.0;

evaluated at 7 = 701 i, i)

7o( i .o7o u .j= A i t7o ?i ,i
A2[7o
+A4;

Tod^ is the stress at the i01 strain reversal for
the loading direction.

Equation 18-1 is established by generalising
Equation 17, considering the possibility of a
sequence of strain reversals. Note that for the

1st stress-strain path (i.e. for i - 1), the
summation in Equation 18-1 equals zero
(i.e. forj = 1...0, the summation is zero), and,
therefore, Equation 18-1 degenerates to the
definition of ^o(i.i) given with Equation 14-1.
A similar general expression for e0(24l is

WVT :»

0(2,i)

... 18-2

where. WI2^ = W(2ti)(y) evaluated at -y =
70(2,i)

=A i f7o (\i)+7n ?2.i)7o<2j)+7o(2,i)7o (22.j)+7o (32j)]+

+-44;

.i = 7o(2.j) - 70(2.1): and

T0(2.i) is the stress at the ilh strain reversal for
the unloading direction.

£ (J i ) and £(2,i) are similar to k, which, as
discussed earlier, is determined from a non-
linear regression. & ( l l , and fcai) are derived
assuming that the instantaneous stiffness at
a point of strain reversal equals the slope of
the original asymptote |T,(7) or T2(7)] at the
strain corresponding to the strain reversal
(7ou,i) or 70,2iU) multiplied by (1 + k). As a
result of this assumption, the instantaneous
stiffness at a strain reversal depends only on
the strain at the reversal, not on the loading
history, and this instantaneous stiffness at
strain reversal is consistent with that of FPAM
(Equation 8) and FPAPM (Equation 10).
For example, to derive fc(] 2) Equation 15 is
differentiated:
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dy dy

dy

dy

... 19

After substituting 7 = 70(121 into Equation 19
and equating the right side of Equation 19 to
dr (7)
—l-—0 +&) evaluated at 7 = 70(12)' ^n 2) is

t/'Y
expressed as:

H',

where, DW,Ml-2 =

...20

evaluated at

-4212^0(1,2) +70(1,1)]+ ^3;

^7(i D.2 and
Equation 17;

are defined with

evaluated at -y = -Y0(i,2)

and
- *•

Considering the possibility of a sequence of
strain reversals, the general expression for £ ( I ] )
is:

i-i
V

Mj) '

dW Ov)
where,DW(l,,, = ——— evaluated at 7 =

' ' dy-You,) r

= ̂ i [37o2(ia) + 270(1,̂ 0(10) + 7o2(i.i)] +

A7(id)|] and W(lj)a are defined with
Equation 18-1', and

W(i i).i = ^(i.i)(T) evaluated at 7 = 70,,,,

Similarly, the general expression for £(2]) is:

where,/) Wf-j ,, , =
•'"* dy

.., 21-2

evaluated at 7 =
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A-y and )., are defined with
Equation 18-2:

(2.iM = W,2,0("y) evaluated at y =

and &,2,n = k.

FPAPM with SAM, as defined by
Equation 16-1 and 76-2, Equation 18-1 and
18-2, and Euation 21-1 and 27-2, maintains
three sets of quantities, "VOILSTII - eo(i-STi> and
^orLST.p' which define individual stress-strain
paths] = l,2,3...i, where i is the current stress-
strain path. LST is 1 for the loading direction
or 2 for the unloading direction. The quantities
for the stress-strain paths are ordered so that
the absolute value of "yo *s 'ess tnan the
absolute value of 70iLsi,i-n- an(l therefore
7un ST,U has the smallest absolute value.
Whenever a strain reversal occurs, the strain at
the strain reversal is compared with the strains
at the previous reversals for that direction,
"VOiLSTjl-

If the absolute value of the strain at the new
strain reversal is less than the absolute value
°f 7(ML,si.u- then a new stress-strain path is
established as follows: i is incremented by 1;
the strain at the new reversal becomes the new
7o(LST,i); and ew^} and ^LST,,) are calculated
and the new stress-strain path i is established.

If the absolute value of the strain at the
new strain reversal is greater than or equal to
the absolute value of one value in ^HLSTU-
say "YcxLST.m)' then a new stress-strain path is
established as follows: all of the quantities
"YpiLSTji- ecHLSTji- and VST.J) for J = m-"i are

discarded; i is set equal to in; the strain at the
new reversal becomes the new 7n(LST,ip and
euiLsi,n and /co(LST.n are calculated and the new
stress-strain path i is established.

Compared to FPAPM alone (Equation 12)
which is based on the local loading history,
FPAPM with SAM more accurately accounts
for the loading history under random
loading. Figure 10 shows the hysteresis
loops generated using FPAPM with SAM.
Good agreement is observed between data
generated with FPAPM when small strain
reversals are not included in the history, and
FPAPM with SAM when small strain reversals
are included.

CONCLUSIONS

A series of experiments on UHDNR structural
dampers were summarised. Compared to HDR
used in base isolation system, the loss factor for
UHDNR structural dampers is quite high,
between 0.35 and 0.40.

Rate-independent models for the hysteresis
beha\iour of UHDNR structural dampers
under dynamic loading have been presented.
The fourth order polynomial with power
function model (FPAPM) was quite accurate
when compared to the experimental data for
strain amplitudes less than 100%. However, the
parameters determined from fitting the FPAPM
model to the experimental data should be
verified using other UHDNR experimental data
sets.

The fourth order polynomial with
power function model (FPAPM) combined
with SAM more accurately accounts
for the loading history under random
loading than FPAPM alone. In particular,
when the loading history includes a series
of small strain reversals, FPAPM
combined with SAM avoids the problem
of overshooting the stress-strain path that
would be followed without the strain
reversals.
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Figure 10. Hysteresis loops using FPAPM with SAM under random loading.
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