
Numerous types of electrically conductive 
rubber blends (based on a carbon1–16 or non-
carbon17–31 conductive filler) have been prepared 
either through mechanical mixing1–16,18–20,30, 
solution mixing17,19,21–26,32,33, electrochemical 
intergrowth27–28,31 or in situ polymerisation29. 
However, studies1,18–29 involving synthetic 
rubbers, e.g. nitrile rubber, polychloroprene, 
poly(ethylene-co-propylene-co-diene) 
(EPDM), poly(butadiene-co-styrene) (SBS) 

copolymer and others have become major 
interests. Literature on conductive elastomeric 
blends based on natural rubbers and 
intrinsically electrically conductive polymers 
is limited. 

Blends of Standard Malaysian Rubber 
(SMR-20 grade) with polyaniline were 
prepared as in previous work by Helaly and co-
workers30, using a two-roll mill in order to study 
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the efficiency of polyaniline as an antioxidant 
against thermal ageing for SMR-20. Some 
blends of SMR-polythiophene have also been 
prepared by the electrochemical method31 and 
reached a high electrical conductivity (of the 
order of 10–1S.cm–1), but only with 80 wt% of 
polythiophene loading. 

In this work, ENR was selected for 
the blending studies because of its good 
mechanical properties34 and good predicted 
compatibility with intrinsically conductive 
polymers (based on values of solubility 
parameters found in the literature26,34).  
Special interest has been focused on PAni,  
since the monomer (aniline) is relatively 
inexpensive, the polymerisation process 
is straightforward and it proceeds with a 
high yield35,36. When PAni is doped with 
sulfonated organic acids containing large 
alkyl groups (long flexible chains), e.g. 
dodecylbenzenesulfonic acid (DBSA) or p-
toluenesulfonic acid (p-TSA), it becomes 
highly electrically conductive and soluble in 
many organic solvents37.

The aim of the present work was to study 
ENR-intrinsically conductive polymer blends 
made by combining a commercially available 
grade of ENR with different amounts of  
PAni.DBSA. It was decided to produce all  
of the blends from solution, which required  
both components to be soluble in a common 
shared solvent. This method has been 
successfully applied to the synthetic rubber-
intrinsically conductive polymer blends26, 
but it had not previously been used for 
natural rubber-based ones. Characterisation 
of the resulting blends is reported here, 
using Fourier-transform infrared (FT-IR) 
and proton NMR spectroscopy as well as 
differential scanning calorimetry (DSC). 
The electrical conductivities of all the pure 
polymers and blends were determined, and 
their morphologies were studied by optical 
and electron microscopy. 

EXPERIMENTAL

Chemicals and Raw Materials

Aniline monomer (99 wt%, Sigma-
Aldrich), ammonium persulphate [APS]  
(98 wt%, Sigma-Aldrich), 36.5-38 wt% HCl 
solution (GPR), anhydrous ferric chloride 
[FeCl3] (98 wt%, Sigma-Aldrich), 33 wt% 
ammonia solution (GPR), 70 wt% DBSA 
solution in 2-propanol (GPR, Sigma-Aldrich), 
chloroform (GPR), methanol (GPR), and ENR 
(grade ENR 50 with 50 mole% of epoxide 
level, manufactured by the Malaysian Rubber 
Board). The raw ENR was washed with 
methanol for 24h using Soxhlet extraction in 
order to remove chemical contaminants. 

Solubility Parameter Value Calculations for 
Main Materials

Equation 1 and the values of functional 
group molar attraction constants Fi calculated 
by Hoy38 were used to estimate the solubility 
parameters (p) for pure ENR 50 and PAni.
DBSA. 

p =
   Fi

          M0 … 1

where,
 = the density of the polymer (kg.m–3), 
M0 = the formula weight of the polymer repeat 

unit (kg.mol–1)
Fi = the sum of the group molar attraction 

constants in the polymer repeat unit  
[(J.m3)0.5.mol–1]. 

Synthesis of PAni.DBSA

Conductive emeraldine salt PAni.HCl 
was synthesised by an oxidative chemical 
polymerisation based on an oxidant (APS)/
monomer (aniline) initial mole ratio of 1.0. 
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50mL of aniline and 125.2 g of APS were 
dissolved in 375 mL and 276 mL of 2M HCl 
respectively, which had been pre-cooled to 
1ºC. The aniline solution was placed in an 
ice bath with an overhead stirrer. After the 
addition of a few drops of FeCl3 solution as a 
catalyst, the APS solution was added gradually 
over a period of 20 min, with constant stirring 
to ensure thorough mixing. The pH of the 
polymerisation mixture was adjusted to 0 – 0.5 
with concentrated HCl, while the temperature 
was maintained between 0 – 2ºC. In order to 
complete the polymerisation, the mixture was 
left for 6 h. The precipitate was allowed to 
settle before decanting and final washing with 
distilled water until the filtrate was colourless. 
PAni emeraldine base (EB) was prepared by 
de-protonating the wet PAni.HCl in 33% 
aqueous ammonia solution (3000 – 5000 mL) 
with 24 h stirring, followed by washing and 
re-protonation in 1M aqueous DBSA at a 
molar ratio EB:DBSA of 1:1. Filtration was 
done with a sintered-glass funnel of grade 3 
porosity (16-40 microns). All products were 
washed with large quantities of distilled water 
until the filtrates were colourless and no odour 
of ammonia could be detected. Final drying of 
the powdered filter cake was carried out in a 
vacuum oven at 50ºC for 24 h. A sample of 
PAni.DBSA prepared here was submitted for 
elemental analysis26,37 (at Medac Ltd., U.K.) 
and was estimated to have a 42% protonation 
level on the basis of the S:N atomic ratio. 

Preparation of Blend

Masterbatch solutions of pure ENR 50  
(0.02 g ENR/mL CHCl3) and PAni.DBSA 
(0.0167 g PAni.DBSA/mL CHCl3) were 
prepared and filtered. The pure rubber solution 
was added to portions of the PAni.DBSA 
solution in appropriate amounts to obtain the 
following compositions (ENR wt%: PAni.
DBSA wt%), 50:50, 60:40, 70:30, 80:20, 
90:10, 95:5, 96:4, 97.5:2.5, 98:2 and 99:1 

respectively. Each of these blend solutions 
was magnetically stirred for 24 h at room 
temperature prior to casting.

NMR Spectroscopy

Samples of pure ENR 50 and ENR-PAni.
DBSA blends were studied using a H1 NMR 
(Bruker AC300 with processor WIN NMR) 
in order to investigate the extent of possible 
ring-opening of the ENR as a result of adding 
PAni.DBSA. About 0.005 g of each sample 
was dissolved in d-chloroform before being 
examined by NMR (with 30º pulse and 6 sec 
pulse delay). In each case, 4 to 6 portions of 
the sample were examined. 

Morphological Studies (Optical Microscopy 
and TEM)

The ENR-PAni.DBSA blends were studied 
with a Nikon OPTIPHOT-2 optical microscope 
(200 x magnification) linked to a computer 
by a video converter (LINKAM VTO 232) 
for digital image capture. A small drop of 
each sample blend solution was put onto a 
microscope cover-glass (2 cm  2 cm) and 
allowed to evaporate to form a thin (~3.0 µm) 
transparent film. 

Blends with 2.5 wt% (generally below the 
conductivity threshold) and 5 wt% (generally 
above the conductivity threshold) of PAni.
DBSA were also studied by TEM (with a Philips 
CM12 microscope at accelerating voltage, 
80 kV). Ultra-thin samples (ca. 150 nm) of 
each blend were obtained for this purpose by 
sectioning with an RMC MT7000 microtome.

FT-IR Spectroscopy

Infra-red spectra of pure ENR 50, PAni.
DBSA and ENR-PAni.DBSA blends were 
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recorded on a Perkin-Elmer FT-IR PARAGON 
100 Spectrometer. A small amount of each 
sample solution was cast onto a KBr window 
in order to obtain a reasonably thin (3.0 µm), 
transparent film.

Thermal Analysis

DSC was used to characterise PAni.DBSA 
powder, pure ENR 50 and all the ENR-
PAni.DBSA blend films. Above-ambient 
temperatures (30 to 300ºC), a Mettler Toledo 
DSC 822e (heating rate 20ºC/minute) was  
used while sub-ambient temperature scans 
(–60 to 0ºC) were obtained using a Perkin-
Elmer Pyris Diamond DSC (heating rate 
50ºC/minute). Each sample was sealed in a 
40 µL aluminium pan and analysed under 
N2 atmosphere, with an empty pan as the 
reference. Each thermal analysis was repeated 
twice, and the error for all of the results was 
about ± 1.5ºC. 

Electrical Conductivity Measurement

The dc electrical conductivities of PAni.
DBSA, pure ENR 50 and ENR-PAni.DBSA 
blends were calculated from electrical 
resistance values measured by 2- or 4-probe 
techniques. A Keithley 617 programmable 
electrometer and a Keithley 224 program-
mable current source (both under computer 
control) were used for this purpose. A  
pressed pellet of pure PAni.DBSA (diameter 
13 mm, thickness 1.5 mm; prepared in a KBr  
press at 10 tonnes load) was placed in a  
holder with four spring-loaded metallic 
contacts in order to measure its electrical 
resistance.

 
For the 4-probe van der Pauw technique39, 

samples of each ENR-PAni.DBSA blend were 
cast from solution onto square microscope 
slides (625 mm2), and the solvent was allowed 

to evaporate for 24 h. Fine copper wires  
50 mm long were attached to the four corners 
of the cast films using small silver paint 
contacts (Acheson Electrodag 915). Guarded 
2-probe electrical resistance measurements26 
were performed for less conductive cast films 
(conductivity < 10–7S.cm–1).

For the samples measured by the 4-
probe technique, electrical conductivities 
were calculated from the mean resistance 
values using the van der Pauw equation  
(Equation 2).

 =
         2ln2

       (R1 + R2)df … 2

where  is the electrical conductivity 
[S.cm–1], R1 and R2 are the mean values of 
apparent resistance (voltage/current ratio) for 
a cast blend in its two perpendicular contact 
configurations, d is the thickness of the sample 
and f is a geometric factor (close to unity for 
symmetrical contacts on circular pellets or 
square plaques). 

Electrical conductivities were also cal-
culated from the mean resistance values 
obtained by the 2-probe method using 
Equation 3.

 =
 ( 1 ) ( L )          R      A … 3

where  is the electrical conductivity, R is the 
mean value of apparent resistance (voltage/
current ratio) for the cast blend, L is the 
electrode spacing and A is the cross-sectional 
area of cast film between the current-carrying 
electrodes.

The dc electrical conductivities of PAni.
DBSA, pure ENR 50 and ENR-PAni.DBSA 
blends were calculated from electrical 
“resistance” (voltage/current) values measured 
by 2- or 4-probe techniques. 
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RESULTS AND DISCUSSION

Solubility Parameter Value Calculations 
for Main Materials

Chloroform has a solubility parameter 
of 19.0(MJ.m–3)1/2 37, and pure ENR 50 was  
soluble in it. The PAni.DBSA prepared in this 
work was highly soluble in chloroform, giving 
dark green solutions. The calculated solubility 
parameters for the PAni.DBSA and pure ENR 
50 used here are 20.8 and 18.4(MJ.m–3)1/2 
respectively. All of these calculated values 
agreed with those reported in the literature26,28,34. 
It is predicted that the miscibility between 
ENR and PAni.DBSA could be enhanced by 
increasing the epoxidation level of ENR.

NMR Spectroscopy

The calculated results of epoxide level and 
ring-opening (mole%) for pure ENR 50 and 
ENR 50-PAni.DBSA blends are summarised in 
Table 1. Examples of the blends NMR spectra 

are shown in Figures 1 to 3. Results from 
Table 1 show a decreasing epoxide content and 
increasing total of ring-opening. There is quite 
a lot of variability for the furan group analysis 
due to the difficulty of inaccurate integration 
as a result of background noise. It is worth 
noting the type of ring-opening observed here. 
When the epoxide ring in ENR opens, it can 
result in two alternative structures: (1) Ring-
opening to form furan groups by adjoining  
the next monomer unit40,41, which will result in 
peaks assigned to CH-O (in the region of 3.9-
3.7p.p.m.). (2) Ring-opening to form ‘diol’ 
groups42 with CH-OH moieties (assigned to 
peaks in the region of 3.5 – 3.3 p.p.m.). 

Often, both types occur together, with furan 
tending to predominate when the host rubber 
has a high epoxide content. In these samples 
there is a predominance of furan formation in 
both 95:5 and 90:10 blends but in the other 
cases of higher PAni.DBSA levels (i.e. 20– 
50 wt%), there appears to be a predominance 
of peaks in the 3.5–3.3p.p.m. region and hence 
greater evidence of ‘diol’ formation. 

TABLE 1. THE MEAN PROPORTIONS OF EPOXIDE CONVERSION AND RING-OPENING 
(MOLE%) FOR PURE ENR 50 AND ENR 50-PAni.DBSA BLENDS (UNCERTAINTY= ±1.5 wt%)

                                  Mole %
Pure material/blend Epoxidised Furan Group ‘Diol’ Group Total of Ring
(wt% ENR 50:wt% PAni.DBSA) Isoprene Unit (3.9–3.7 p.p.m.) (3.5–3.3 p.p.m.) Opened
    (Furan + ‘Diol’)

Pure ENR 50 47.2 2.1 0.4 2.5

Blends

95:05 46.4 2.0 1.0 3.0

90:10 43.1 3.5 2.0 5.5

80:20 40.9 1.6 6.1 7.7

70:30 26.3 9.1 14.0 23.1

60:40 24.6 2.2 21.5 23.7

50:50 21.5 10.6 17.0 27.6
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Figure 1. NMR spectrum of ENR-PAni.DBSA blend (90 wt%:10 wt%).
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Figure 2. NMR spectrum of ENR-PAni.DBSA blend (70 wt%:30 wt%).
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Morphological Studies (Optical Microscopy 
and TEM)

All the ENR 50-PAni.DBSA cast films 
were studied by optical microscopy, but only 
images of blends containing 5, 20, 30 and  
40 wt% of PAni.DBSA are shown in Figure 4.

As for the synthetic rubber based blends26, 
two different regions were observed, i.e. the 
regions rich in ENR (in pale colour or pale 
green in actual) and the regions rich in PAni.
DBSA (in dark colour or dark green in actual). 
The dark-coloured regions consisted of large 
conductive particles and their agglomerates, 
as a result of some degree of phase separation. 
The pale-coloured regions were the regions of 
well-blended PAni.DBSA and ENR. The ENR-
PAni.DBSA blends were similar to those in 
previously-studied NBR-PAni.DBSA blends26 

in that the total area of the dark-coloured 
region increased with increasing content 
of PAni.DBSA. For the blend containing  
≥30 wt% of PAni.DBSA, some large particles 
could be found. 

Figure 5 shows the TEM micrographs of 
blends with 2.5 and 5 wt% of added PAni.
DBSA. PAni.DBSA particles in the rubber 
matrix were again observed as the darker 
regions in both TEM micrographs. Some 
large isolated PAni.DBSA particles could be 
found from Figure 5(a) for the ENR blend 
with 2.5 wt% PAni.DBSA, which also had  
the relatively low electrical conductivity 
(Figure 12). Some conductive networks were 
also formed when the PAni.DBSA particles 
were getting closer to each other [Figure 5(b)] 
and this was attributed to the higher loading 
and better dispersion of PAni.DBSA particles 
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Figure 3. NMR spectrum of ENR-PAni.DBSA blend (50 wt%:50 wt%).
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Figure 4. Optical micrographs (200  magnification) for the blends of ENR 50-PAni.DBSA. Blends contain 
(a) 60:40 (b) 70:30 (c) 80:20 and (d) 95:5 wt% ENR50:wt% PAni.DBSA.

within the ENR host matrix. This is why the 
5 wt% PAni.DBSA blend had relatively much 
higher electrical conductivity (Figure 12). 
Both the TEM micrographs show some very 
small particles of PAni.DBSA (in colloidal 
dimensions, ~20 – 100 nm). These small 
particles had contributed to the electrical 
conductivity of the blends since they could 
also form some small conductive networks as 
described in the literature26.

FT-IR Spectroscopy

Selected regions of the FT-IR spectra for 
pure PAni.DBSA, pure ENR 50 and their 
blends with 5 to 50 wt% of PAni.DBSA are 
shown in Figure 6. The FT-IR spectra of 
pure ENR 50 and all the blends show the 
characteristic absorptions at 1250 cm–1 (epoxy 
ring bond stretching), 875 cm–1 (C-C of epoxy 
ring stretching), 796 cm–1 and 837 cm–1 (ring 

(c) (d)

(a) (b)
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deformation), 2859 cm–1 (C-H stretching 
vibration of epoxy ring) and 3390 cm–1 (-OH 
stretching vibration of ‘diol’ ring-opening). 
Some very weak absorptions at 1112 cm–1 
(aliphatic ethers, C-O-C for furan group) were 
also observed in the FT-IR spectra of pure 
ENR 50 and all blends.

For the blends with low levels of 
PAni.DBSA (i.e. ≤20 wt%), there was a 
predominance of ENR absorption bands 
in their FT-IR spectra. Meanwhile for the  
blends with high levels of PAni.DBSA (i.e. 
≥30 wt%), their FT-IR spectra exhibited a 
predominance of PAni.DBSA absorption 
bands. However through some detailed 
examination, the intensity of absorptions at 
3390 cm–1 (solely corresponding to the ‘diol’ 
ring-opening) for all the blends increased 

with the amount of added PAni.DBSA. At 
the same time, the intensity of absorptions at  
2859 cm–1 (solely corresponding to the epoxide 
ring) decreased with the proportion of PAni.
DBSA. The absorbance intensity for each of 
these peaks is directly related to the changing 
level of each assigned functional group (since 
the cast films of all blends had the same 
thickness). It is proposed that the higher the 
peak absorbance intensity, the higher the level 
of each assigned functional group content. All 
values of absorbance intensity were based on 
the local baseline position. 

Results from this section are in agreement 
with those from NMR spectroscopy, where 
both of them are showing that the proportion 
of the ‘diol’ ring opening increased and the 
proportion of the epoxide ring decreased with 

Figure 5. Transmission electron micrographs (40,000  magnification) of the ENR 50-PAni.DBSA blends. 
Blends contain, (a) 2.5 wt% of PAni.DBSA and (b) 5 wt% of PAni.DBSA.

(a) (b)
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Figure 6. FT-IR spectra of PAni.DBSA, pure ENR 50 and their blends (wt% ENR:wt% PAni.DBSA*).  
(a) 750–1300 cm–1, (b) 2800–3100 cm–1 and (c) 3300–3600 cm–1.

Line 1-ENR 50, Line 2-Blend (95 wt% ENR:5 wt% PAni.DBSA), Line 3-Blend (90 wt% ENR:10 wt% PAni.
DBSA), Line 4- Blend (80 wt% ENR:20 wt% PAni.DBSA), Line 5- Blend (70 wt% ENR:30 wt% PAni.
DBSA), Line 6- Blend (60 wt% ENR:40 wt% PAni.DBSA), Line 7- Blend (50 wt% ENR:50 wt% PAni.

DBSA), Line 8-PAni.DBSA.
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the PAni.DBSA loading. Graphs (Figures 7 and 
8) were plotted for these two characteristic peak 
absorbance intensities versus the proportion of 
PAni.DBSA in order to make the comparison 
quantitatively. 

Thermal Analysis

Figure 9 shows the sub-ambient tempera-
ture DSC thermograms for pure ENR 50 and 
its blends with 10 to 50 wt% of PAni.DBSA. 
(A DSC thermogram for pure PAni.DBSA is 
again not shown here because there were no 
obvious thermal events in the low-temperature 
region). Figure 10 shows the above-ambient 
temperature DSC thermograms for PAni.
DBSA, pure ENR 50 and its blends with 10 to 
50 wt% of the conducting polymer. 

The mean Tg values for the pure ENR 50 and 
ENR-PAni.DBSA blends are given in Table 2. 
The results show a significant and progressive 
rise in the Tg values with the proportion of 
PAni.DBSA. While this may partly be an effect 
of some phase mixing between the polymers, 
it also very likely to be the result of ENR ring 
opening. Ring opened and furanised ENR 
also has a raised Tg depending on the extent 
of the ring opening34. A log Tg (Kelvin) versus 
log ring-opening (mole%) chart was plotted 
in order to compare these two parameters 
quantitatively (Figure 11). It was found that 
the log values of these two parameters were 
linearly related with a slope of 0.0457 and 
intercept of 2.378 as shown in Figure 11.

From Table 3, pure ENR was thermally 
stable up to about 206ºC. PAni.DBSA also 
had good thermal stability up to about 233ºC. 
All the above-ambient temperature DSC 
thermograms for the blends showed thermal 
processes that were combinations of events 
observed for pure ENR 50 and PAni.DBSA, 
but the events showed some temperature shifts 
relative to the corresponding processes in 

the pure polymers (Table 3). The blends with 
≤40 wt% of PAni.DBSA showed the largest 
temperature shifts due to reasonably good 
compatibility between the two polymers (as 
shown by the optical micrographs: Figure 4). 
As shown in Figure 10, the endothermic event 
before the major exotherm (corresponding to 
the total absorbed energy for the ring opening 
process) increased with increasing loading 
of PAni.DBSA. It is believed that this was 
corresponded to the further ring opening 
(catalysed by the higher concentration of PAni.
DBSA) occurred before the major exothermic 
process (i.e. degradation) of the blend.  

Electrical Conductivity Measurement

The calculated electrical conductivity 
values for the PAni.DBSA, pure ENR 50 
and ENR-PAni.DBSA blends are shown by  
Figure 12. Pure ENR 50 is a very good 
electrical insulator, with a conductivity of 
about 3.8  10–16S.cm–1. The PAni.DBSA used 
here had an electrical conductivity of 1.2S.cm–1, 
comparable with values found from literature 
for amorphous, un-aligned PAni.DBSA26,37. 

The electrical conductivity of all the blends 
increased with the proportion of PAni.DBSA, 
as observed in several studies of PAni.DBSA 
blends18,20,23,25–26,29. The blends reached an elec-
trical conductivity in the order of 10–3S.cm–1 
with about 40 wt% of PAni.DBSA loading. 
The conductivity percolation threshold for all 
ENR-PAni.DBSA blends was estimated by 
fitting the data from Figure 12 to a percolation 
model as defined by Equation 425,43. 

f = c(f – fp)
t … 4

where; c is a constant, t is the critical exponent, 
f is the volume fraction of the conductive 
medium and fp is the volume fraction at the 
percolation threshold. All the weight fractions 
referred to above were converted into volume 



Figure 7. Chart of FT-IR peak absorbance, A (uncertainty, ± 0.005) at 2859 cm–1 versus the wt% of  
PAni.DBSA in the ENR-PAni.DBSA blends.
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Figure 8. Chart of FT-IR peak absorbances, A (uncertainty, ± 0.01) at 3390 cm–1 versus the wt% of  
PAni.DBSA in the ENR-PAni.DBSA blends.
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fractions for this analysis. The values of t and 
correlation coefficient (R) for each case were 
estimated by fitting the data to a plot of log 
electrical conductivity () versus log (f – fp). 

The estimated first electrical conductivity 
percolation threshold for the ENR 50-PAni.

DBSA blends is 2.9 wt% (or 2.5 volume %) 
of PAni.DBSA (with t = 4.9 and R = 0.98). 
A second stage of percolation threshold with 
about 5 wt% (or 4.4 volume %) of added PAni.
DBSA (with t = 5.4 and R = 0.99) was also 
observed. It corresponded to the separated 
phases of both polymers, i.e. the dark-

Figure 9. Sub-ambient temperature DSC thermograms for pure ENR 50 and its blends  
(wt% ENR:wt% PAni.DBSA) with 10 to 50 wt% of PAni.DBSA.

Line 1-ENR 50, Line 2-Blend (95 wt% ENR:5 wt% PAni.DBSA),  
Line 3-Blend (90 wt% ENR:10 wt% PAni.DBSA), Line 4- Blend (80 wt% ENR:20 wt% PAni.DBSA),  
Line 5- Blend (70 wt% ENR:30 wt% PAni.DBSA), Line 6- Blend (60 wt% ENR:40 wt% PAni.DBSA),  

Line 7- Blend (50 wt% ENR:50 wt% PAni.DBSA).
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coloured regions in the optical and electron 
micrographs.

A very low threshold value was seen 
here, for which the conductivity is likely to 
be contributed by those regions with well 

dispersed conducting polymer (the pale-
green regions of the optical and electron 
micrographs). The values of t for a classical 
double-percolation model as described in the 
literature43 are in the range between 2 and 4. 
Here, t is estimated with a value greater than 

Figure 10. Above-ambient temperature DSC thermograms for PAni.DBSA, pure ENR 50 and its blends  
(wt% ENR:wt% PAni.DBSA) with 10 to 50 wt% of PAni.DBSA.

Line 1-ENR 50, Line 2-Blend (95 wt% ENR:5 wt% PAni.DBSA),  
Line 3-Blend (90 wt% ENR:10 wt% PAni.DBSA), Line 4- Blend (80 wt% ENR:20 wt% PAni.DBSA),  

Line 5- Blend (70 wt% ENR:30 wt% PAni.DBSA), Line 6- Blend (60 wt% ENR:40 wt% PAni.DBSA), Line 
7- Blend (50 wt% ENR:50 wt% PAni.DBSA), Line 8-PAni.DBSA.
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4 and it is likely to be attributed by some on-
going chemical reactions of the blended ENR 
50 and PAni.DBSA, e.g. formation of furan 
and ‘diol’ group. 

CONCLUSION

The ENR 50-PAni.DBSA blends prepared in 
this work had good electrical conductivities, 
comparable with those of the nitrile rubber-
based ones26 due to appreciable miscibility 
between the two polymers (as shown by the 
proportion of pale-coloured regions in both 
optical and electron micrographs). Significant 

ring-opening of the ENR occurred (as detected 
by NMR and FT-IR spectroscopy) for blends 
with a high loading of PAni.DBSA (i.e. 30 
wt% or above) and this was attributed to the 
sensitivity of the epoxide group of the rubber 
to acidic conditions. A progressive rise in the 
Tg values and increasing of the endothermic 
events with the proportion of PAni.DBSA as 
recorded by low and high temperature DSC 
thermograms respectively, are also proposed 
to be the results of ring-opening.

Two stages of electrical percolation threshold 
were observed for the ENR 50-PAni.DBSA 
blends, i.e. the first one (2.9 wt%/2.5 volume 

TABLE 2. THE MEAN GLASS TRANSITION TEMPERATURE (Tg) VALUES FOR  
PURE ENR 50 AND ENR-PAni.DBSA BLENDS

Pure material/Blend Glass transition temperature, ºC
(wt% ENR : wt% PAni.DBSA)

Pure ENR 50 –26.6

Blends
95:05 –24.5
90:10 –20.9
80:20 –19.1
70:30 –15.4
60:40 6.0
50:50 6.7

TABLE 3. THE MEAN ONSET TEMPERATURES OF THE EXOTHERM AND ENDOTHERM BEFORE 
THE MAJOR EXOTHERM IN THE ABOVE-AMBIENT TEMPERATURE DSC THERMOGRAMS OF 

PANI.DBSA, PURE ENR 50 AND ENR-PAni.DBSA BLENDS

Pure material/Blend Onset temperature, ºC
(wt% ENR : wt% PAni.DBSA) Endotherm Exotherm

Pure ENR 50 – 206.0

Blends
95:05 – 162.5
90:10 – 137.0
80:20 94.0 173.0
70:30 92.0 124.0
60:40 106.0 173.0
50:50 104.0 197.0
PAni.DBSA 36.0 234.0



Figure 11. Chart of log glass transition temperature, Tg (Kelvin) versus log ring opening  
(Mole%) of ENR-PAni.DBSA Blends.
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Figure 12. Electrical conductivities for the ENR 50-PAni.DBSA blends as  
a function of PAni.DBSA Content (wt%).
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% of PAni.DBSA) which corresponded to the 
well-blended regions (pale green in optical 
micrographs) and the second one (5 wt%/4.4 
volume % of PAni.DBSA) which corresponded 
to the phase separated regions (dark-coloured 
in optical micrographs). It has been shown 
here that the ring opening does not seriously 
affect the electrical properties of the ENR 50-
PAni.DBSA blends. However, it is well known 
that the ring opening of ENR will decrease  
its elastomeric properties and can ultimately 
lead to formation of a hard thermoplastic 
material, called furanised natural rubber34. 
Hence, the tolerable loading of PAni.DBSA is 
likely to be no more than 30 wt% in practice 
(based on the mole % of total ring opening).
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